Many-body interactions between particles in a polydisperse polymer fluid

被引:7
|
作者
Woodward, Clifford E. [1 ]
Forsman, Jan [2 ]
机构
[1] Univ New S Wales, Univ Coll, Sch Phys Environm & Math Sci, ADFA, Canberra, ACT 2600, Australia
[2] Lund Univ, Ctr Chem, S-22100 Lund, Sweden
关键词
approximation theory; many-body problems; phase diagrams; polymers; PHASE-BEHAVIOR; MIXTURES; MODEL;
D O I
10.1063/1.3685834
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We use a continuum chain model and develop an analytical theory for the interaction between many spheres immersed in a fluid of ideal polydisperse polymers. Assuming local spherical symmetry of the polymer field about each particle, combined with a local approximation, compact expressions are derived for the many-body interaction between the spheres. We use a mean-field approximation to investigate the fluid-fluid phase diagram for the mixture. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3685834]
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Many-body localization in a quasiperiodic system
    Iyer, Shankar
    Oganesyan, Vadim
    Refael, Gil
    Huse, David A.
    PHYSICAL REVIEW B, 2013, 87 (13)
  • [32] Many-body mobility edge due to symmetry-constrained dynamics and strong interactions
    Mondragon-Shem, Ian
    Pal, Arijeet
    Hughes, Taylor L.
    Laumann, Chris R.
    PHYSICAL REVIEW B, 2015, 92 (06)
  • [33] Machine-learning effective many-body potentials for anisotropic particles using orientation-dependent symmetry functions
    Campos-Villalobos, Gerardo
    Giunta, Giuliana
    Marin-Aguilar, Susana
    Dijkstra, Marjolein
    JOURNAL OF CHEMICAL PHYSICS, 2022, 157 (02)
  • [34] Exact evaluation of the depletion force between nanospheres in a polydisperse polymer fluid under Θ conditions
    Wang, Haiqiang
    Woodward, Clifford E.
    Forsman, Jan
    JOURNAL OF CHEMICAL PHYSICS, 2014, 140 (19)
  • [35] Dephasing rate formula in the many-body context
    Cohen, Doron
    von Delft, Jan
    Marquardt, Florian
    Imry, Yoseph
    PHYSICAL REVIEW B, 2009, 80 (24):
  • [36] Quantum criticality in many-body parafermion chains
    Lahtinen, Ville
    Mansson, Teresia
    Ardonne, Eddy
    SCIPOST PHYSICS CORE, 2021, 4 (02):
  • [37] Many-body effects in a binary nano-particle mixture dispersed in ideal polymer solutions
    Nguyen, Huy S.
    Forsman, Jan
    Woodward, Clifford E.
    JOURNAL OF CHEMICAL PHYSICS, 2019, 150 (04)
  • [38] Randomness of Eigenstates of Many-Body Quantum Systems
    Sun, Li-Zhen
    Nie, Qingmiao
    Li, Haibin
    ENTROPY, 2019, 21 (03):
  • [39] Quantum geometry of correlated many-body states
    Hassan, S. R.
    Shankar, R.
    Chakrabarti, Ankita
    PHYSICAL REVIEW B, 2018, 98 (23)
  • [40] Many-Body Perturbation Theories for Finite Nuclei
    Tichai, Alexander
    Roth, Robert
    Duguet, Thomas
    FRONTIERS IN PHYSICS, 2020, 8