The influence of pipe length on thermal statistics computed from DNS of turbulent heat transfer

被引:29
|
作者
Saha, S. [1 ]
Chin, C. [1 ]
Blackburn, H. M. [2 ]
Ooi, A. S. H. [1 ]
机构
[1] Univ Melbourne, Dept Mech Engn, Melbourne, Vic 3010, Australia
[2] Monash Univ, Dept Mech & Aerosp Engn, Clayton, Vic 3800, Australia
关键词
Turbulent heat transfer; Direct numerical simulation; Pipe flow; Prandtl number; DIRECT NUMERICAL-SIMULATION; LARGE-SCALE MOTION; CHANNEL FLOW; PRANDTL NUMBER; BOUNDARY-LAYER; TRANSPORT; REYNOLDS;
D O I
10.1016/j.ijheatfluidflow.2011.09.003
中图分类号
O414.1 [热力学];
学科分类号
摘要
We present results from direct numerical simulation of turbulent heat transfer in pipe flow at a bulk flow Reynolds number of 5000 and Prandtl numbers ranging from 0.025 to 2.0 in order to examine the effect of streamwise pipe length (pi delta pi D/2 <= L <= 12 pi delta) on the convergence of thermal turbulence statistics. Various lower and higher order thermal statistics such as mean temperature, rms of fluctuating temperature, turbulent heat fluxes, two-point auto and cross-correlations, skewness and flatness were computed and it is found that the value of L required for convergence of the statistics depends on the Prandtl number: larger Prandtl numbers requires comparatively shorter pipe length for convergence of most of the thermal statistics. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:1083 / 1097
页数:15
相关论文
共 50 条
  • [1] Validation criteria for DNS of turbulent heat transfer in pipe flow
    Saha, Sumon
    Ooi, Andrew S. H.
    Blackburn, Hugh M.
    10TH INTERNATIONAL CONFERENCE ON MECHANICAL ENGINEERING (ICME 2013), 2014, 90 : 599 - 604
  • [2] DNS of turbulent heat transfer in a channel flow with a high spatial resolution
    Kozuka, Makoto
    Seki, Yohji
    Kawamura, Hiroshi
    INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW, 2009, 30 (03) : 514 - 524
  • [3] Influence of the computational domain on DNS of turbulent heat transfer up to Reτ=2000 for Pr=0.71
    Lluesma-Rodriguez, F.
    Hoyas, S.
    Perez-Quiles, M. J.
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2018, 122 : 983 - 992
  • [4] Turbulent heat transfer characteristics of water flow in a rotating pipe
    Bousbai, M.
    Ould-Rouiss, M.
    Mazouz, A.
    Mataoui, A.
    HEAT AND MASS TRANSFER, 2013, 49 (04) : 469 - 484
  • [5] Statistical analysis of instantaneous turbulent heat transfer in circular pipe flows
    Tavakoli, Ehsan
    Hosseini, Reza
    Papalexandris, Miltiadis
    Lessani, Bamdad
    HEAT AND MASS TRANSFER, 2014, 50 (01) : 125 - 137
  • [6] Mixed convection study on the influence of low Prandtl numbers and buoyancy in turbulent heat transfer using DNS
    Guo, Wentao
    Prasser, Horst-Michael
    ANNALS OF NUCLEAR ENERGY, 2021, 158
  • [7] Comparison of thermal scaling properties between turbulent pipe and channel flows via DNS
    Saha, S.
    Klewicki, J. C.
    Ooi, A. S. H.
    Blackburn, H. M.
    INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2015, 89 : 43 - 57
  • [8] Heat transfer in rough-wall turbulent thermal convection in the ultimate regime
    MacDonald, Michael
    Hutchins, Nicholas
    Lohse, Detlef
    Chung, Daniel
    PHYSICAL REVIEW FLUIDS, 2019, 4 (07):
  • [9] DNS of turbulent low Mach channel flow under asymmetric high temperature gradient: Effect of thermal boundary condition on turbulence statistics
    Avellaneda, J. M.
    Bataille, F.
    Toutant, A.
    INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW, 2019, 77 : 40 - 47
  • [10] DNS on turbulent heat transfer of viscoelastic fluid flow in a plane channel with transverse rectangular orifices
    Tsukahara, Takahiro
    Kawase, Tomohiro
    Kawaguchi, Yasuo
    PROGRESS IN COMPUTATIONAL FLUID DYNAMICS, 2013, 13 (3-4): : 212 - 223