Associated homogeneous p-adic distributions

被引:8
作者
Albeverio, S
Khrennikov, AY [1 ]
Shelkovich, VM
机构
[1] Vaxjo Univ, Int Ctr Math Modeling Phys & Cognit Sci, MSI, Vaxjo, Sweden
[2] Univ Bonn, Inst Angew Math, D-53115 Bonn, Germany
[3] SFB 611, Bonn, Germany
[4] BiBoS, Bielefeld, Germany
[5] IZKS, Bonn, Germany
[6] CERFIM, Locarno, Switzerland
[7] St Petersburg State Architecture & Civil Engn Uni, St Petersburg, Russia
关键词
associated homogeneous p-adic distributions (generalized functions);
D O I
10.1016/j.jmaa.2005.05.016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce a concept of associated homogeneous p-adic distributions (generalized functions) and provide a mathematical description of all associated homogeneous distributions and their Fourier transform. We prove that any associated homogeneous distribution of degree pi(alpha)(x) is periodic in the variable a. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:64 / 83
页数:20
相关论文
共 22 条
[1]   p-adic Hilbert space representation of quantum systems with an infinite number of degrees of freedom [J].
Albeverio, S ;
Khrennikov, A .
INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 1996, 10 (13-14) :1665-1673
[2]   Representations of the Weyl group in spaces of square integrable functions with respect to p-adic valued Gaussian distributions [J].
Albeverio, S ;
Khrennikov, A .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (17) :5515-5527
[3]  
[Anonymous], MOD PHYS LETT A
[4]  
[Anonymous], 1994, P ADIC ANAL MATH PHY
[5]  
AREFEVA Y, 1998, PHYS LETT B, V209, P445
[6]  
Bruhat F., 1961, B SOC MATH FRANCE, V89, P43
[7]   Algebras of the singularities of singular solutions to first-order quasi-linear strictly hyperbolic systems [J].
Danilov, VG ;
Maslov, VP ;
Shelkovich, VM .
THEORETICAL AND MATHEMATICAL PHYSICS, 1998, 114 (01) :1-42
[8]  
DANILOV VG, 2001, NONLINEAR STUD, V8, P135
[9]   ADELIC STRING AMPLITUDES [J].
FREUND, PGO ;
WITTEN, E .
PHYSICS LETTERS B, 1987, 199 (02) :191-194
[10]  
Gel'fand I. M., 1964, GEN FUNCTIONS PROPER