DNA Concentration Modulation on Supported Lipid Bilayers Switched by Surface Acoustic Waves

被引:7
|
作者
Hennig, Martin [1 ]
Wolff, Manuel [1 ]
Neumann, Juergen [2 ]
Wixforth, Achim [3 ]
Schneider, Matthias F. [4 ]
Raedler, Joachim O. [1 ]
机构
[1] Univ Munich, Ctr NanoSci, Fak Phys, D-80539 Munich, Germany
[2] Biozentrum LMU Munchen, Ctr NanoSci, D-82152 Planegg Martinsried, Germany
[3] Univ Augsburg, Ctr NanoSci, Inst Phys, D-86159 Augsburg, Germany
[4] Boston Univ, Boston, MA 02215 USA
关键词
PHOSPHOLIPID-BILAYERS; MEMBRANES; ELECTROPHORESIS; DIFFUSION; VESICLES; DOMAINS;
D O I
10.1021/la203413b
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Spatially addressable arrays of molecules embedded in or anchored to supported lipid bilayers are important for on-chip screening and binding assays; however, methods to sort or accumulate components in a fluid membrane on demand are still limited. Here we apply in-plane surface acoustic shear waves (SAWs) to laterally accumulate double-stranded DNA segments electrostatically bound to a cationic supported lipid bilayer. The fluorescently labeled DNA segments are found to segregate into stripe patterns with a spatial frequency corresponding to the periodicity of the standing SAW wave (similar to 10 mu m). The DNA molecules are accumulated 10-fold in the regions of SAW antinodes. The superposition of two orthogonal sets of SAW sources creates checkerboard like arrays of DNA demonstrating the potential to generate arrayed fields dynamically. The pattern relaxation time of 0.58 s, which is independent of the segment length, indicates a sorting and relaxation mechanism dominated by lipid diffusion rather than DNA self-diffusion.
引用
收藏
页码:14721 / 14725
页数:5
相关论文
共 21 条
  • [1] Dynamic Modulation of the Glycosphingolipid Content in Supported Lipid Bilayers by Glycolipid Transfer Protein
    Carton, Ixaskun
    Malinina, Lucy
    Richter, Ralf P.
    BIOPHYSICAL JOURNAL, 2010, 99 (09) : 2947 - 2956
  • [2] Controlling transmembrane protein concentration and orientation in supported lipid bilayers
    Bao, P.
    Cartron, M. L.
    Sheikh, K. H.
    Johnson, B. R. G.
    Hunter, C. N.
    Evans, S. D.
    CHEMICAL COMMUNICATIONS, 2017, 53 (30) : 4250 - 4253
  • [3] Surface nanoroughness impacts the formation and stability of supported lipid bilayers
    Villanueva, Martin Eduardo
    Bar, Laure
    Losada-Perez, Patricia
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2024, 682
  • [4] Silica xerogel/aerogel-supported lipid bilayers: Consequences of surface corrugation
    Goksu, Emel I.
    Hoopes, Matthew I.
    Nellis, Barbara A.
    Xing, Chenyue
    Faller, Roland
    Frank, Curtis W.
    Risbud, Subhash H.
    Satcher, Joe H., Jr.
    Longo, Marjorie L.
    BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES, 2010, 1798 (04): : 719 - 729
  • [5] Surface-Enhanced Raman Spectroscopy of Fluid-Supported Lipid Bilayers
    Bruzas, Ian
    Brinson, Bruce E.
    Gorunmez, Zohre
    Lum, William
    Ringe, Emilie
    Sagle, Laura
    ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (36) : 33442 - 33451
  • [6] Site-Specific DNA-Controlled Fusion of Single Lipid Vesicles to Supported Lipid Bilayers
    Simonsson, Lisa
    Jonsson, Peter
    Stengel, Gudrun
    Hook, Fredrik
    CHEMPHYSCHEM, 2010, 11 (05) : 1011 - 1017
  • [7] Clustering of α-Synuclein on Supported Lipid Bilayers: Role of Anionic Lipid, Protein, and Divalent Ion Concentration
    Pandey, Anjan P.
    Haque, Farzin
    Rochet, Jean-Christophe
    Hovis, Jennifer S.
    BIOPHYSICAL JOURNAL, 2009, 96 (02) : 540 - 551
  • [8] Acetylcholinesterase Activity Influenced by Lipid Membrane Area and Surface Acoustic Waves
    Schnitzler, Lukas G.
    Baumgartner, Kathrin
    Kolb, Anna
    Braun, Benedikt
    Westerhausen, Christoph
    MICROMACHINES, 2022, 13 (02)
  • [9] Anomalous Diffusion in Supported Lipid Bilayers Induced by Oxide Surface Nanostructures
    Tero, Ryugo
    Sazaki, Gen
    Ujihara, Tom
    Urisu, Tsuneo
    LANGMUIR, 2011, 27 (16) : 9662 - 9665
  • [10] Surface nanostructures for fluorescence probing of supported lipid bilayers on reflective substrates
    Dabkowska, Aleksandra P.
    Piret, Gaelle
    Niman, Cassandra S.
    Lard, Mercy
    Linke, Heiner
    Nylander, Tommy
    Prinz, Christelle N.
    NANOSCALE, 2015, 7 (43) : 18020 - 18024