Global well-posedness and optimal large-time behavior of strong solutions to the non-isentropic particle-fluid flows
被引:4
|
作者:
Mu, Yanmin
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Univ Finance & Econ, Sch Appl Math, Nanjing 210046, Peoples R China
Nanjing Normal Univ, Sch Math Sci, Nanjing 210023, Peoples R China
Nanjing Normal Univ, Math Inst, Nanjing 210023, Peoples R ChinaNanjing Univ Finance & Econ, Sch Appl Math, Nanjing 210046, Peoples R China
Mu, Yanmin
[1
,2
,3
]
Wang, Dehua
论文数: 0引用数: 0
h-index: 0
机构:
Univ Pittsburgh, Dept Math, Pittsburgh, PA 15260 USANanjing Univ Finance & Econ, Sch Appl Math, Nanjing 210046, Peoples R China
Wang, Dehua
[4
]
机构:
[1] Nanjing Univ Finance & Econ, Sch Appl Math, Nanjing 210046, Peoples R China
[2] Nanjing Normal Univ, Sch Math Sci, Nanjing 210023, Peoples R China
[3] Nanjing Normal Univ, Math Inst, Nanjing 210023, Peoples R China
[4] Univ Pittsburgh, Dept Math, Pittsburgh, PA 15260 USA
In this paper, we study the three-dimensional non-isentropic compressible fluid-particle flows. The system involves coupling between the Vlasov-Fokker-Planck equation and the non-isentropic compressible Navier-Stokes equations through momentum and energy exchanges. For the initial data near the given equilibrium we prove the global well-posedness of strong solutions and obtain the optimal algebraic rate of convergence in the three-dimensional whole space. For the periodic domain the same global well-posedness result still holds while the convergence rate is exponential. New ideas and techniques are developed to establish the well-posedness and large-time behavior. For the global well-posedness our methods are based on the new macro-micro decomposition which involves less dependence on the spectrum of the linear Fokker-Plank operator and fine energy estimates; while the proofs of the optimal large-time behavior rely on the Fourier analysis of the linearized Cauchy problem and the energy-spectrum method, where we provide some new techniques to deal with the nonlinear terms.
机构:
Shijiazhuang Tiedao Univ, Dept Math & Phys, Shijiazhuang 050043, Hebei, Peoples R ChinaShijiazhuang Tiedao Univ, Dept Math & Phys, Shijiazhuang 050043, Hebei, Peoples R China
WANG, S. H. A. S. H. A.
XU, WEN-QING
论文数: 0引用数: 0
h-index: 0
机构:
Calif State Univ Long Beach, Dept Math & Stat, Long Beach, CA 90840 USAShijiazhuang Tiedao Univ, Dept Math & Phys, Shijiazhuang 050043, Hebei, Peoples R China
XU, WEN-QING
LIU, J. I. T. A. O.
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Univ Technol, Dept Math, Fac Sci, Beijing 100124, Peoples R ChinaShijiazhuang Tiedao Univ, Dept Math & Phys, Shijiazhuang 050043, Hebei, Peoples R China
机构:
Northeastern Univ Qinhuangdao, Sch Math & Stat, Qinhuangdao, Peoples R ChinaNortheastern Univ Qinhuangdao, Sch Math & Stat, Qinhuangdao, Peoples R China
Shang, Haifeng
Liu, Chao
论文数: 0引用数: 0
h-index: 0
机构:
Northeastern Univ Qinhuangdao, Sch Math & Stat, Qinhuangdao, Peoples R ChinaNortheastern Univ Qinhuangdao, Sch Math & Stat, Qinhuangdao, Peoples R China
机构:
Northeastern Univ Qinhuangdao, Sch Math & Stat, Qinhuangdao 066004, Peoples R ChinaNortheastern Univ Qinhuangdao, Sch Math & Stat, Qinhuangdao 066004, Peoples R China
Shang, Haifeng
Liu, Chao
论文数: 0引用数: 0
h-index: 0
机构:
Northeastern Univ Qinhuangdao, Sch Math & Stat, Qinhuangdao 066004, Peoples R ChinaNortheastern Univ Qinhuangdao, Sch Math & Stat, Qinhuangdao 066004, Peoples R China