New P-stable exponentially-fitted methods for the numerical solution of the Schrodinger equation

被引:4
作者
Avdelas, G
Kefalidis, E
Simos, TE
机构
[1] Univ Crete, Dept Sci, Lab Appl Math & Comp, GR-73100 Khania, Crete, Greece
[2] Democritus Univ Thrace, Sch Engn, Dept Civil Engn, Sect Math, GR-67100 Xanthi, Greece
关键词
Schrodinger equation; exponential fitting; P-stability; finite difference; multistep methods; scattering problems;
D O I
10.1016/S0927-0256(01)00146-X
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A family of P-stable exponentially-fitted methods for the numerical integration of the Schrodinger equation is obtained in this paper. An application to the resonance problem of the one-dimensional Schrodinger equation indicates that the new methods are generally more efficient than the previously developed exponentially-fitted methods of the same kind. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:301 / 319
页数:19
相关论文
共 41 条
[1]  
Blatt J M, 1967, J COMP PHYSIOL, V1, P382, DOI [10.1016/0021-9991(67)90046-0, DOI 10.1016/0021-9991(67)90046-0]
[2]   A 6TH-ORDER EXPONENTIALLY FITTED METHOD FOR THE NUMERICAL-SOLUTION OF THE RADIAL SCHRODINGER-EQUATION [J].
CASH, JR ;
RAPTIS, AD ;
SIMOS, TE .
JOURNAL OF COMPUTATIONAL PHYSICS, 1990, 91 (02) :413-423
[3]   A HIGH-ORDER METHOD FOR THE NUMERICAL-INTEGRATION OF THE ONE-DIMENSIONAL SCHRODINGER-EQUATION [J].
CASH, JR ;
RAPTIS, AD .
COMPUTER PHYSICS COMMUNICATIONS, 1984, 33 (04) :299-304
[4]   A NOUMEROV-TYPE METHOD WITH MINIMAL PHASE-LAG FOR THE INTEGRATION OF 2ND-ORDER PERIODIC INITIAL-VALUE PROBLEMS .2. EXPLICIT METHOD [J].
CHAWLA, MM ;
RAO, PS .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1986, 15 (03) :329-337
[5]   2-STEP 4TH-ORDER P-STABLE METHODS WITH PHASE-LAG OF ORDER 6 FOR Y''=F(T,Y) [J].
CHAWLA, MM ;
RAO, PS ;
NETA, B .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1986, 16 (02) :233-236
[6]   P-stability and exponential-fitting methods for y''=f(x, y) [J].
Coleman, JP ;
Ixaru, LG .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1996, 16 (02) :179-199
[8]  
Cooley JW., 1961, MATH COMPUT, V15, P363
[9]   RUNGE-KUTTA-NYSTROM TRIPLES [J].
DORMAND, JR ;
PRINCE, PJ .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1987, 13 (12) :937-949
[10]   HIGH-ORDER EMBEDDED RUNGE-KUTTA-NYSTROM FORMULAS [J].
DORMAND, JR ;
ELMIKKAWY, MEA ;
PRINCE, PJ .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1987, 7 (04) :423-430