A series of experiments is presented examining the thermo-electro-mechanical response of commercially-available, conditioned, shape memory alloy (SMA) wires (Flexinol(R), from Dynalloy, Corp.) during cyclic thermomechanical loading. A specialized experimental setup enables temperature control via a thermoelectric/heatsink in thermal contact with the wire specimen during various modes of testing. It allows simultaneous measurement of elongation, load, strain and resistivity in a selected gage length. It also allows full-field optical and infrared imaging to be performed during testing. A moderately high transition temperature NiTi-based shape memory wire (90C Flexinol) is characterized first by differential scanning calorimetry and a series of isothermal experiments over a range of temperatures. Subsequent experiments examine the shakedown behavior over a range of dead loading temperature cycles. Results show a significant two-way shape memory effect, suggesting that both residual stresses and locked-in oriented Martensite are considerable in this commercial alloy. Repeatable behavior (little shakedown) is confirmed at relatively low stress levels, but significant evolution in the response (shakedown behavior) exists at higher stress levels during the first several temperature cycles.