A Simultaneous Inversion Problem for the Variable-Order Time Fractional Differential Equation with Variable Coefficient

被引:6
作者
Wang, Shengnan [1 ]
Wang, Zhendong [1 ]
Li, Gongsheng [1 ]
Wang, Yingmei [1 ]
机构
[1] Shandong Univ Technol, Sch Math & Stat, Zibo 255049, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
NUMERICAL TECHNIQUES; SOURCE-TERM; DIFFUSION; APPROXIMATION;
D O I
10.1155/2019/2562580
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper deals with an inverse problem of simultaneously determining the space-dependent diffusion coefficient and the fractional order in the variable-order time fractional diffusion equation by the measurements at one interior point. Numerical solution to the forward problem is given by the finite difference scheme, and the homotopy regularization algorithm is applied to solve the inverse problem utilizing Legendre polynomials as the basis functions of the approximate space. The inversion solutions with noisy data which give good approximations to the exact solution demonstrate effectiveness of the inversion algorithm for the simultaneous inversion problem.
引用
收藏
页数:13
相关论文
共 35 条
[1]   Highly accurate numerical schemes for multi-dimensional space variable-order fractional Schrodinger equations [J].
Bhrawy, A. H. ;
Zaky, M. A. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 73 (06) :1100-1117
[2]   An improved collocation method for multi-dimensional space-time variable-order fractional Schrodinger equations [J].
Bhrawy, A. H. ;
Zaky, M. A. .
APPLIED NUMERICAL MATHEMATICS, 2017, 111 :197-218
[3]   Numerical simulation for two-dimensional variable-order fractional nonlinear cable equation [J].
Bhrawy, A. H. ;
Zaky, M. A. .
NONLINEAR DYNAMICS, 2015, 80 (1-2) :101-116
[4]   Numerical approximation for a variable-order nonlinear reaction-subdiffusion equation [J].
Chen, Chang-Ming ;
Liu, F. ;
Turner, I. ;
Anh, V. ;
Chen, Y. .
NUMERICAL ALGORITHMS, 2013, 63 (02) :265-290
[5]   FAST FINITE DIFFERENCE APPROXIMATION FOR IDENTIFYING PARAMETERS IN A TWO-DIMENSIONAL SPACE-FRACTIONAL NONLOCAL MODEL WITH VARIABLE DIFFUSIVITY COEFFICIENTS [J].
Chen, S. ;
Liu, F. ;
Jiang, X. ;
Turner, I. ;
Burrage, K. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2016, 54 (02) :606-624
[6]   Numerical simulation of a new two-dimensional variable-order fractional percolation equation in non-homogeneous porous media [J].
Chen, S. ;
Liu, F. ;
Burrage, K. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2014, 67 (09) :1673-1681
[7]   Uniqueness in an inverse problem for a one-dimensional fractional diffusion equation [J].
Cheng, Jin ;
Nakagawa, Junichi ;
Yamamoto, Masahiro ;
Yamazaki, Tomohiro .
INVERSE PROBLEMS, 2009, 25 (11)
[8]   Numerical inversions of a source term in the FADE with a Dirichlet boundary condition using final observations [J].
Chi, Guangsheng ;
Li, Gongsheng ;
Jia, Xianzheng .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 62 (04) :1619-1626
[9]   Mechanics with variable-order differential operators [J].
Coimbra, CFM .
ANNALEN DER PHYSIK, 2003, 12 (11-12) :692-703
[10]   Some novel numerical techniques for an inverse problem of the multi-term time fractional partial differential equation [J].
Fan, W. ;
Liu, F. ;
Jiang, X. ;
Turner, I. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 336 :114-126