The Linear Arboricity of Planar Graphs without chordal short cycles

被引:0
作者
Wang, Hui-Juan [1 ]
Liu, Bin [2 ]
Wu, Jian-Liang [1 ]
机构
[1] Shandong Univ, Sch Math, Jinan 250100, Peoples R China
[2] Ocean Univ China, Dept Math, Qingdao 266100, Peoples R China
关键词
planar graph; linear arboricity; cycle;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The linear arboricity of a graph G is the minimum number of linear forests which partition the edges of G. In this paper, it is proved that if a planar graph G with Delta(G) >= 7 and without chordal i-cycles for some i is an element of {4, 5, 6, 7}, then la(G) = inverted right perpendicular Delta(G)/2inverted left perpendicular. It generalizes the result in [3], [4] and [10].
引用
收藏
页码:255 / 263
页数:9
相关论文
共 12 条
[1]  
Akiyama J., 1980, Mathematica Slovaca, V30, P405
[2]  
Bondy J. A., 1976, Graduate Texts in Mathematics, V290
[3]  
Chen H.Y., B MALAYSIAN IN PRESS
[4]  
Chen HY, UTILITAS MA IN PRESS
[5]  
Cygan M., J GRAPH THE IN PRESS
[6]   THE LINEAR ARBORICITY OF SOME REGULAR GRAPHS [J].
ENOMOTO, H ;
PEROCHE, B .
JOURNAL OF GRAPH THEORY, 1984, 8 (02) :309-324
[7]  
Tan XA, 2010, ARS COMBINATORIA, V97A, P367
[8]   The linear arboricity of planar graphs of maximum degree seven is four [J].
Wu, Jian-Liang ;
Wu, Yu-Wen .
JOURNAL OF GRAPH THEORY, 2008, 58 (03) :210-220
[9]   The linear arboricity of planar graphs with no short cycles [J].
Wu, Jian-Liang ;
Hou, Jian-Feng ;
Liu, Gui-Zhen .
THEORETICAL COMPUTER SCIENCE, 2007, 381 (1-3) :230-233
[10]  
Wu JL, 2009, LECT NOTES OPER RES, V10, P174