Compactness of solutions to the Yamabe problem. II

被引:85
作者
Li, YY
Zhang, L
机构
[1] Rutgers State Univ, Dept Math, Piscataway, NJ 08854 USA
[2] Univ Florida, Dept Math, Gainesville, FL 32611 USA
关键词
D O I
10.1007/s00526-004-0320-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
[No abstract available]
引用
收藏
页码:185 / 237
页数:53
相关论文
共 86 条
[1]  
Aleksandrov A. D., 1958, VESTNIK LENINGRAD U, V13, P5
[2]  
Alexandrov A. D., 1958, AM MATH SOC TRANSL, V21, P412
[3]   On the Yamabe problem and the scalar curvature problems under boundary conditions [J].
Ambrosetti, A ;
Li, YY ;
Malchiodi, A .
MATHEMATISCHE ANNALEN, 2002, 322 (04) :667-699
[4]   Perturbation of Δu plus u(N+2)/(N-2)=0, the scalar curvature problem in RN, and related topics [J].
Ambrosetti, A ;
Azorero, JG ;
Peral, I .
JOURNAL OF FUNCTIONAL ANALYSIS, 1999, 165 (01) :117-149
[5]   Methods of algebraic topology for the prescribed scalar curvature problem [J].
Aubin, T ;
Bahri, A .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 1997, 76 (06) :525-549
[6]  
AUBIN T, 1976, J MATH PURE APPL, V55, P269
[7]   Topological hypothesis for the prescribed scalar curvature problem [J].
Aubin, T ;
Bahri, A .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 1997, 76 (10) :843-850
[8]   ON A NONLINEAR ELLIPTIC EQUATION INVOLVING THE CRITICAL SOBOLEV EXPONENT - THE EFFECT OF THE TOPOLOGY OF THE DOMAIN [J].
BAHRI, A ;
CORON, JM .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1988, 41 (03) :253-294
[9]   THE SCALAR-CURVATURE PROBLEM ON THE STANDARD 3-DIMENSIONAL SPHERE [J].
BAHRI, A ;
CORON, JM .
JOURNAL OF FUNCTIONAL ANALYSIS, 1991, 95 (01) :106-172
[10]   ANOTHER PROOF OF THE YAMABE CONJECTURE FOR LOCALLY CONFORMALLY FLAT MANIFOLDS [J].
BAHRI, A .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1993, 20 (10) :1261-1278