Strongly clean triangular matrices over abelian rings

被引:2
作者
Diesl, Alexander J. [1 ]
Dorsey, Thomas J. [2 ]
Iberkleid, Wolf [3 ]
LaFuente-Rodriguez, Ramiro [4 ]
McGovern, Warren Wm [5 ]
机构
[1] Wellesley Coll, Dept Math, Wellesley, MA 02481 USA
[2] Ctr Commun Res, San Diego, CA 92126 USA
[3] Nova SE Univ, Dept Math, Ft Lauderdale, FL 33314 USA
[4] DYouville Coll, Buffalo, NY USA
[5] Florida Atlantic Univ, HL Wilkes Honors Coll, Jupiter, FL USA
关键词
EXCHANGE RINGS; IDEMPOTENTS;
D O I
10.1016/j.jpaa.2015.03.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the problem of determining when a triangular matrix ring over a strongly clean ring is, itself, strongly clean. We prove that, if R is a commutative clean ring, then T-n(R) is strongly clean for every positive n. In the more general case that R is an abelian clean ring, we provide sufficient conditions which imply that T-n(R) is strongly clean. We end with a brief consideration of the non-abelian case. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:4889 / 4906
页数:18
相关论文
共 23 条
  • [1] [Anonymous], 2001, GRADUATE TEXTS MATH
  • [2] [Anonymous], 1967, Memoirs of the American Mathematical Society
  • [3] [Anonymous], 1986, CAMBRIDGE STUDIES AD
  • [4] Strongly clean triangular matrix rings over local rings
    Borooah, Gautam
    Diesl, Alexander J.
    Dorsey, Thomas J.
    [J]. JOURNAL OF ALGEBRA, 2007, 312 (02) : 773 - 797
  • [5] Burgess WD, 2009, CONTEMP MATH, V480, P35
  • [6] Burgess W.D., 1979, CAN MATH BULLETIN, V22, P159, DOI 10.4153/CMB-1979-022-8
  • [7] ON STRONGLY PI-REGULAR RINGS AND HOMOMORPHISMS INTO THEM
    BURGESS, WD
    MENAL, P
    [J]. COMMUNICATIONS IN ALGEBRA, 1988, 16 (08) : 1701 - 1725
  • [8] PIERCE SHEAVES OF NON-COMMUTATIVE RINGS
    BURGESS, WD
    STEPHENSON, W
    [J]. COMMUNICATIONS IN ALGEBRA, 1976, 4 (01) : 51 - 75
  • [9] EXCHANGE RINGS, UNITS AND IDEMPOTENTS
    CAMILLO, VP
    YU, HP
    [J]. COMMUNICATIONS IN ALGEBRA, 1994, 22 (12) : 4737 - 4749
  • [10] CAMPOS ES, 2002, STRONGLY CLEAN UNPUB