Orthogonal and symplectic Yangians - representations of the quadratic evaluation

被引:0
|
作者
Karakhanyan, D. [1 ]
Kirschner, R. [2 ]
机构
[1] Yerevan Phys Inst, 2 Alikhanyan Br, Yerevan 0036, Armenia
[2] Univ Leipzig, Inst Theoret Phys, D-04009 Leipzig, Germany
关键词
MATRIX;
D O I
10.1088/1742-6596/1194/1/012058
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Orthogonal or symplectic Yangians are defined by the Yang-Baxter RLL relation involving the fundamental R matrix with so(n) or sp(2m) symmetry. The conditions on the evaluation of the second order are investigated with respect to the restrictions implied on the representation weights.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Representations of the Super Yangians of Types A and C
    Molev, Alexander
    ALGEBRAS AND REPRESENTATION THEORY, 2023, 26 (04) : 1007 - 1027
  • [42] GELFAND TSETLIN BASIS FOR REPRESENTATIONS OF YANGIANS
    MOLEV, AI
    LETTERS IN MATHEMATICAL PHYSICS, 1994, 30 (01) : 53 - 60
  • [43] Twisted super-Yangians and their representations
    Briot, C
    Ragoucy, E
    JOURNAL OF MATHEMATICAL PHYSICS, 2003, 44 (03) : 1252 - 1275
  • [44] Representations of twisted q-Yangians
    Gow, Lucy
    Molev, Alexander
    SELECTA MATHEMATICA-NEW SERIES, 2010, 16 (03): : 439 - 499
  • [45] Representations of twisted q-Yangians
    Lucy Gow
    Alexander Molev
    Selecta Mathematica, 2010, 16 : 439 - 499
  • [46] Representations of the Super Yangians of Types A and C
    Alexander Molev
    Algebras and Representation Theory, 2023, 26 : 1007 - 1027
  • [47] Baxter Q-operators and representations of Yangians
    Bazhanov, Vladimir V.
    Frassek, Rouven
    Lukowski, Tomasz
    Meneghelli, Carlo
    Staudacher, Matthias
    NUCLEAR PHYSICS B, 2011, 850 (01) : 148 - 174
  • [48] Poles of finite-dimensional representations of Yangians
    Sachin Gautam
    Curtis Wendlandt
    Selecta Mathematica, 2023, 29
  • [49] On the R-matrix realization of Yangians and their representations
    Arnaudon, Daniel
    Molev, Alexander
    Ragoucy, Eric
    ANNALES HENRI POINCARE, 2006, 7 (7-8): : 1269 - 1325