Orthogonal and symplectic Yangians - representations of the quadratic evaluation

被引:0
|
作者
Karakhanyan, D. [1 ]
Kirschner, R. [2 ]
机构
[1] Yerevan Phys Inst, 2 Alikhanyan Br, Yerevan 0036, Armenia
[2] Univ Leipzig, Inst Theoret Phys, D-04009 Leipzig, Germany
关键词
MATRIX;
D O I
10.1088/1742-6596/1194/1/012058
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Orthogonal or symplectic Yangians are defined by the Yang-Baxter RLL relation involving the fundamental R matrix with so(n) or sp(2m) symmetry. The conditions on the evaluation of the second order are investigated with respect to the restrictions implied on the representation weights.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Representations of orthogonal and symplectic Yangians
    Karakhanyan, D.
    Kirschner, R.
    NUCLEAR PHYSICS B, 2021, 967
  • [2] Spinor Representations of Orthogonal and Symplectic Yangians
    Karakhanyan, D.
    PHYSICS OF PARTICLES AND NUCLEI LETTERS, 2020, 17 (05) : 794 - 802
  • [3] Spinor Representations of Orthogonal and Symplectic Yangians
    D. Karakhanyan
    Physics of Particles and Nuclei Letters, 2020, 17 : 794 - 802
  • [4] Orthogonal and symplectic Yangians: Linear and quadratic evaluations
    Karakhanyan, D.
    Kirschner, R.
    NUCLEAR PHYSICS B, 2018, 933 : 14 - 39
  • [5] Orthogonal and Symplectic Yangians and Lie Algebra Representations
    D. Karakhanyan
    R. Kirschner
    Theoretical and Mathematical Physics, 2019, 198 : 239 - 248
  • [6] ORTHOGONAL AND SYMPLECTIC YANGIANS AND LIE ALGEBRA REPRESENTATIONS
    Karakhanyan, D.
    Kirschner, R.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2019, 198 (02) : 239 - 248
  • [7] Orthogonal and symplectic Yangians
    Kirschner, R.
    XXIV INTERNATIONAL CONFERENCE ON INTEGRABLE SYSTEMS AND QUANTUM SYMMETRIES (ISQS-24), 2017, 804
  • [8] Orthogonal and symplectic Yangians: oscillator realization
    Karakhanyan, D.
    Kirschner, R.
    XXIV INTERNATIONAL CONFERENCE ON INTEGRABLE SYSTEMS AND QUANTUM SYMMETRIES (ISQS-24), 2017, 804
  • [9] Second-order evaluations of orthogonal and symplectic Yangians
    D. R. Karakhanyan
    R. Kirschner
    Theoretical and Mathematical Physics, 2017, 192 : 1154 - 1161
  • [10] Equivalences between three presentations of orthogonal and symplectic Yangians
    Guay, Nicolas
    Regelskis, Vidas
    Wendlandt, Curtis
    LETTERS IN MATHEMATICAL PHYSICS, 2019, 109 (02) : 327 - 379