In this article, we study the stability problem for the Einstein-Hilbert functional on compact symmetric spaces following and completing the seminal work of Koiso on the subject. We classify in detail the irreducible representations of simple Lie algebras with Casimir eigenvalue less than the Casimir eigenvalue of the adjoint representation and use this information to prove the stability of the Einstein metrics on both the quaternionic and Cayley projective plane. Moreover, we prove that the Einstein metrics on quaternionic Grassmannians different from projective spaces are unstable.
机构:
CERN, Theory Unit, Dept Phys, CH-1211 Geneva 23, Switzerland
Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy
Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA USACERN, Theory Unit, Dept Phys, CH-1211 Geneva 23, Switzerland
Ferrara, Sergio
Marrani, Alessio
论文数: 0引用数: 0
h-index: 0
机构:
Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy
Museo Stor Fis, I-00184 Rome, Italy
Ctr Studi & Ric Enrico Fermi, I-00184 Rome, ItalyCERN, Theory Unit, Dept Phys, CH-1211 Geneva 23, Switzerland
Marrani, Alessio
SYMMETRY IN MATHEMATICS AND PHYSICS,
2009,
490
: 203
-
+
机构:
Masaryk Univ, Fac Sci, Eduard Cech Ctr Algebra & Geometry, CS-61137 Brno, Czech RepublicMasaryk Univ, Fac Sci, Eduard Cech Ctr Algebra & Geometry, CS-61137 Brno, Czech Republic