Stability of Compact Symmetric Spaces

被引:7
|
作者
Semmelmann, Uwe [1 ]
Weingart, Gregor [2 ]
机构
[1] Univ Stuttgart, Inst Geometrie & Topol, Fachbereich Math, Pfaffenwaldring 47, D-70569 Stuttgart, Germany
[2] Univ Nacl Autonoma Mexico, Inst Matemat, Ave Univ S-N, Cuernavaca 62210, Morelos, Mexico
关键词
Symmetric spaces; Einstein metrics; Stability;
D O I
10.1007/s12220-021-00838-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we study the stability problem for the Einstein-Hilbert functional on compact symmetric spaces following and completing the seminal work of Koiso on the subject. We classify in detail the irreducible representations of simple Lie algebras with Casimir eigenvalue less than the Casimir eigenvalue of the adjoint representation and use this information to prove the stability of the Einstein metrics on both the quaternionic and Cayley projective plane. Moreover, we prove that the Einstein metrics on quaternionic Grassmannians different from projective spaces are unstable.
引用
收藏
页数:27
相关论文
共 50 条
  • [41] Symmetric spaces and star representations II. Causal symmetric spaces
    Bieliavsky, P
    Pevzner, M
    JOURNAL OF GEOMETRY AND PHYSICS, 2002, 41 (03) : 224 - 234
  • [42] Pseudosymmetric Spaces as Generalization of Symmetric spaces
    Bilal, Bilal
    Zeren, Yusuf
    Alizade, Betule
    Dal, Feyza Elif
    SAHAND COMMUNICATIONS IN MATHEMATICAL ANALYSIS, 2023, 20 (01): : 61 - 79
  • [43] Stability of symmetric closed characteristics on symmetric compact convex hypersurfaces in a"e2n under a pinching condition
    Liu, Hui
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2012, 28 (05) : 885 - 900
  • [44] Rolling Symmetric Spaces
    Krakowski, Krzysztof A.
    Machado, Luis
    Leite, Fatima Silva
    GEOMETRIC SCIENCE OF INFORMATION, GSI 2015, 2015, 9389 : 550 - 557
  • [45] Γ-structures and symmetric spaces
    Hanke, Bernhard
    Quast, Peter
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2018, 18 (02): : 877 - 895
  • [46] Symmetric Spaces in Supergravity
    Ferrara, Sergio
    Marrani, Alessio
    SYMMETRY IN MATHEMATICS AND PHYSICS, 2009, 490 : 203 - +
  • [47] Parabolic symmetric spaces
    Zalabova, Lenka
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2010, 37 (02) : 125 - 141
  • [48] 'Spindles' in symmetric spaces
    Quast, Peter
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2006, 58 (04) : 985 - 994
  • [49] Parabolic symmetric spaces
    Lenka Zalabová
    Annals of Global Analysis and Geometry, 2010, 37 : 125 - 141
  • [50] Classification of Ricci-flat metrics on the cotangent bundles of compact rank-one symmetric spaces
    Mykytyuk, I. V.
    SBORNIK MATHEMATICS, 2011, 202 (02) : 257 - 278