Mitochondrial enzyme GPT2 regulates metabolic mechanisms required for neuron growth and motor function in vivo

被引:8
作者
Baytas, Ozan [1 ,2 ,3 ,4 ]
Davidson, Shawn M. [5 ]
DeBerardinis, Ralph J. [6 ,7 ]
Morrow, Eric M. [1 ,2 ,3 ]
机构
[1] Brown Univ, Dept Mol Biol Cell Biol & Biochem, Providence, RI 02912 USA
[2] Brown Univ, Ctr Translat Neurosci, Carney Inst Brain Sci, Providence, RI 02912 USA
[3] Brown Univ, Brown Inst Translat Sci, Providence, RI 02912 USA
[4] Brown Univ, Neurosci Grad Program, Providence, RI 02912 USA
[5] Princeton Univ, Lewis Sigler Inst Integrat Genom, Princeton, NJ 08540 USA
[6] Univ Texas Southwestern Med Ctr Dallas, Childrens Med Ctr Res Inst, Dept Pediat, Dallas, TX 75390 USA
[7] UT Southwestern Med Ctr, Howard Hughes Med Inst, Dallas, TX 75390 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
SPASTIC PARAPLEGIA; ALANINE; CELLS; DEHYDROGENASE; EXPRESSION; MUTATIONS; COMPLEXES; DISEASE; GLUCOSE;
D O I
10.1093/hmg/ddab269
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The metabolic needs for postnatal growth of the human nervous system are vast. Recessive loss-of-function mutations in the mitochondrial enzyme glutamate pyruvate transaminase 2 (GPT2) in humans cause postnatal undergrowth of brain, and cognitive and motor disability. We demonstrate that GPT2 governs critical metabolic mechanisms in neurons required for neuronal growth and survival. These metabolic processes include neuronal alanine synthesis and anaplerosis, the replenishment of tricarboxylic acid (TCA) cycle intermediates. We performed metabolomics across postnatal development in Gpt2-null mouse brain to identify the trajectory of dysregulated metabolic pathways: alterations in alanine occur earliest; followed by reduced TCA cycle intermediates and reduced pyruvate; followed by elevations in glycolytic intermediates and amino acids. Neuron-specific deletion of GPT2 in mice is sufficient to cause motor abnormalities and death pre-weaning, a phenotype identical to the germline Gpt2-null mouse. Alanine biosynthesis is profoundly impeded in Gpt2-null neurons. Exogenous alanine is necessary for Gpt2-null neuronal survival in vitro but is not needed for Gpt2-null astrocytes. Dietary alanine supplementation in Gpt2-null mice enhances animal survival and improves the metabolic profile of Gpt2-null brain but does not alone appear to correct motor function. In surviving Gpt2-null animals, we observe smaller upper and lower motor neurons in vivo. We also observe selective death of lower motor neurons in vivo with worsening motor behavior with age. In conclusion, these studies of the pathophysiology of GPT2 Deficiency have identified metabolic mechanisms that are required for neuronal growth and that potentially underlie selective neuronal vulnerabilities in motor neurons.
引用
收藏
页码:587 / 603
页数:17
相关论文
共 48 条
[1]  
Albuquerque C., 2009, COLD SPRING HARB PRO
[2]  
Ashwell KWS, 2009, SPINAL CORD: A CHRISTOPHER AND DANA REEVE FOUNDATION TEXT AND ATLAS, P8, DOI 10.1016/B978-0-12-374247-6.50006-7
[3]  
Blackstone Craig, 2018, Handb Clin Neurol, V148, P633, DOI 10.1016/B978-0-444-64076-5.00041-7
[4]   The effects of L-alanine supplementation in late-onset glycogen storage disease type II [J].
Bodamer, OAF ;
Halliday, D ;
Leonard, JV .
NEUROLOGY, 2000, 55 (05) :710-712
[5]   Glutaminase Inhibition on NSCLC Depends on Extracellular Alanine Exploitation [J].
Caiola, Elisa ;
Colombo, Marika ;
Sestito, Giovanna ;
Lupi, Monica ;
Marabese, Mirko ;
Pastorelli, Roberta ;
Broggini, Massimo ;
Brunelli, Laura .
CELLS, 2020, 9 (08)
[6]   THE EFFECTS OF POSTEXERCISE GLUCOSE AND ALANINE INGESTION ON PLASMA CARNITINE AND KETOSIS IN HUMANS [J].
CARLIN, JI ;
OLSON, EB ;
PETERS, HA ;
REDDAN, WG .
JOURNAL OF PHYSIOLOGY-LONDON, 1987, 390 :295-303
[7]   Loss of function mutation in glutamic pyruvate transaminase 2 (GPT2) causes developmental encephalopathy [J].
Celis, Katrina ;
Shuldiner, Scott ;
Haverfield, Eden V. ;
Cappell, Joshua ;
Yang, Rongze ;
Gong, Da-Wei ;
Chung, Wendy K. .
JOURNAL OF INHERITED METABOLIC DISEASE, 2015, 38 (05) :941-948
[8]  
Chong Jasmine, 2019, Curr Protoc Bioinformatics, V68, pe86, DOI 10.1002/cpbi.86
[9]   Central Role of Glutamate Metabolism in the Maintenance of Nitrogen Homeostasis in Normal and Hyperammonemic Brain [J].
Cooper, Arthur J. L. ;
Jeitner, Thomas M. .
BIOMOLECULES, 2016, 6 (02)
[10]  
Council N.R, 2011, GUIDE CARE USE LAB A, V8th, P246