A generalization of the Minkowski embedding theorem and applications

被引:18
作者
Rojas-Medar, M
Bassanezi, RC
Román-Flores, H
机构
[1] UNICAMP, IMECC, BR-13081 Campinas, SP, Brazil
[2] Univ Tarapaca, Dept Matemat, Arica, Chile
关键词
fuzzy sets; set-convergences; Hausdorff metric; integration of multifunctions; multivalued Bernstein polynomial; Minkowski Embedding Theorem; support functions;
D O I
10.1016/S0165-0114(97)00120-6
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Purl and Ralescu (1985) gave, recently, an extension of the Minkowski Embedding Theorem for the class E-L(n) of fuzzy sets u on R-n with the level application alpha --> L(alpha)u Lipschitzian on the C([0, 1] x Sn-1) space. In this work we extend the above result to the class E-C(n) of level-continuous applications. Moreover, we prove that E-C(n) is a complete metric space with E-L(n) not subset of or equal to E-C(n) and <(E-L(n))over bar> = E-C(n). To prove the last result, we use the multivalued Bernstein polynomials and the Vitali's approximation theorem for multifunction. Also, we deduce some properties in the setting of fuzzy random variable (multivalued). (C) 1999 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:263 / 269
页数:7
相关论文
共 20 条
[1]  
Aliprantis C.D., 1990, PRINCIPLES REAL ANAL
[2]  
Aubin J.-P., 1984, Differential Inclusions
[3]   INTEGRALS OF SET-VALUED FUNCTIONS [J].
AUMANN, RJ .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1965, 12 (01) :1-&
[4]  
Blagodatskikh VI., 1986, P STEKLOV I MATH, V169, P199
[5]  
BOBYLEV VN, 1975, MATH NOTES, V37, P281
[6]  
CASTAING C, 1977, LECT NOTES MATH, V560
[7]   CHARACTERIZATION OF COMPACT SUBSETS OF FUZZY-SETS [J].
DIAMOND, P ;
KLOEDEN, P .
FUZZY SETS AND SYSTEMS, 1989, 29 (03) :341-348
[8]  
DIEUDONNE J, 1979, FUNDAMENTOS ANAL MOD
[9]  
FLORES HR, 1992, 3 C FRANC MAT APL 1
[10]  
Hukuhara M., 1967, Funkcial. Ekvac, V10, P205