DISCRETE-TIME STATISTICAL INFERENCE FOR MULTISCALE DIFFUSIONS

被引:8
作者
Gailus, Siragan [1 ]
Spiliopoulos, Konstantinos [1 ]
机构
[1] Boston Univ, Dept Math & Stat, Boston, MA 02215 USA
关键词
multiscale diffusions; slow fast; homogenization; averaging; parameter estimation; PARAMETRIC-ESTIMATION; POISSON EQUATION; ASYMPTOTICS; VOLATILITY; APPROXIMATION;
D O I
10.1137/17M1147408
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study statistical inference for small-noise-perturbed multiscale dynamical systems under the assumption that we observe a single time series from the slow process only. We construct estimators for both averaging and homogenization regimes, based on an appropriate misspecified model motivated by a second-order stochastic Taylor expansion of the slow process with respect to a function of the time-scale separation parameter. In the case of a fixed number of observations, we establish consistency, asymptotic normality, and asymptotic statistical efficiency of a minimum contrast estimator (MCE), the limiting variance having been identified explicitly; we furthermore establish consistency and asymptotic normality of a simplified MCE, which is, however, not, in general, efficient. These results are then extended to the case of high-frequency observations under a condition restricting the rate at which the number of observations may grow vis-a-vis the separation of scales. Numerical simulations illustrate the theoretical results.
引用
收藏
页码:1824 / 1858
页数:35
相关论文
共 32 条
[11]  
GILBARG D., 2000, Elliptic Partial Differential Equations of Second Order, V2nd
[12]   Parametric inference for discretely observed multidimensional diffusions with small diffusion coefficient [J].
Guy, Romain ;
Laredo, Catherine ;
Vergu, Elisabeta .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2014, 124 (01) :51-80
[13]  
Janke W, 2008, LECT NOTES PHYS, V736, P1
[14]   On the nature of seizure dynamics [J].
Jirsa, Viktor K. ;
Stacey, William C. ;
Quilichini, Pascale P. ;
Ivanov, Anton I. ;
Bernard, Christophe .
BRAIN, 2014, 137 :2210-2230
[15]   SEMIPARAMETRIC DRIFT AND DIFFUSION ESTIMATION FOR MULTISCALE DIFFUSIONS [J].
Krumscheid, S. ;
Pavliotis, G. A. ;
Kalliadasis, S. .
MULTISCALE MODELING & SIMULATION, 2013, 11 (02) :442-473
[16]  
KUTOYANTS Y. A., 1984, Parameter Estimation for Stochastic Processes
[17]  
Kutoyants Yu.A., 1994, Identification of Dynamical Systems with Small Moise
[18]   An applied mathematics perspective on stochastic modelling for climate [J].
Majda, Andrew J. ;
Franzke, Christian ;
Khouider, Boualem .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2008, 366 (1875) :2429-2455
[19]   Maximum likelihood drift estimation for multiscale diffusions [J].
Papavasiliou, A. ;
Pavliotis, G. A. ;
Stuart, A. M. .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2009, 119 (10) :3173-3210
[20]  
Pardoux É, 2003, ANN PROBAB, V31, P1166