Remote sensing-based transformative crop insurance for rice

被引:0
|
作者
Vijayakumar, S. [1 ]
Kumar, R. Mahender [1 ]
Sundaram, R. M. [1 ]
Balasubramanian, P. [2 ]
机构
[1] ICAR Indian Inst Rice Res, Hyderabad 500030, India
[2] Tamil Nadu Agr Univ, Coimbatore 641003, Tamil Nadu, India
来源
CURRENT SCIENCE | 2022年 / 123卷 / 03期
关键词
INDEX;
D O I
暂无
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A robust crop insurance system is critical to limit the impact of multivariable risks and stimulate innovation and investment in the agricultural sectors. A genuine agricultural insurance claim is lacking in India due to unavailability of accurate data. Manual data collection of cropped area, prevented sowing, failed sowing, and flood- and drought-affected areas is laborious, time-consuming, cost-intensive and often erroneous. The existing insurance procedure is not transparent, accurate and fast due to the aforesaid issues. We can overcome these problems using satellite-based remote sensing. An alternative measure of paddy crop performance through crop health factor index derived from synthetic aperture radar remote sensing data can be utilized in place of yield data in the existing area-yield insurance scheme. Tamil Nadu and West Bengal have successfully implemented this technology, which can be applied across India to make crop insurance transparent, accurate and rapid.
引用
收藏
页码:254 / 255
页数:2
相关论文
共 50 条
  • [21] Remote Sensing-Based Yield Forecasting for Sugarcane (Saccharum officinarum L.) Crop in India
    S. K. Dubey
    A. S. Gavli
    S. K. Yadav
    Seema Sehgal
    S. S. Ray
    Journal of the Indian Society of Remote Sensing, 2018, 46 : 1823 - 1833
  • [22] Evapotranspiration from an Olive Orchard using Remote Sensing-Based Dual Crop Coefficient Approach
    Cammalleri, C.
    Ciraolo, G.
    Minacapilli, M.
    Rallo, G.
    WATER RESOURCES MANAGEMENT, 2013, 27 (14) : 4877 - 4895
  • [23] Added utility of temperature zone information in remote sensing-based large scale crop mapping
    Donmez, E.
    Yilmaz, M. T.
    Yucel, I.
    REMOTE SENSING APPLICATIONS-SOCIETY AND ENVIRONMENT, 2024, 35
  • [24] Remote Sensing-Based Yield Forecasting for Sugarcane (Saccharum officinarum L.) Crop in India
    Dubey, S. K.
    Gavli, A. S.
    Yadav, S. K.
    Sehgal, Seema
    Ray, S. S.
    JOURNAL OF THE INDIAN SOCIETY OF REMOTE SENSING, 2018, 46 (11) : 1823 - 1833
  • [25] Partitioning of evapotranspiration in remote sensing-based models
    Talsma, Carl J.
    Good, Stephen P.
    Jimenez, Carlos
    Martens, Brecht
    Fisher, Joshua B.
    Miralles, Diego G.
    McCabe, Matthew F.
    Purdy, Adam J.
    AGRICULTURAL AND FOREST METEOROLOGY, 2018, 260 : 131 - 143
  • [26] Remote sensing-based crop biomass with water or light-driven crop growth models in wheat commercial fields
    Campos, Isidro
    Gonzalez-Gomez, Laura
    Villodre, Julio
    Gonzalez-Piqueras, Jose
    Suyker, Andrew E.
    Calera, Alfonso
    FIELD CROPS RESEARCH, 2018, 216 : 175 - 188
  • [27] Satellite Remote Sensing-Based In-Season Diagnosis of Rice Nitrogen Status in Northeast China
    Huang, Shanyu
    Miao, Yuxin
    Zhao, Guangming
    Yuan, Fei
    Ma, Xiaobo
    Tan, Chuanxiang
    Yu, Weifeng
    Gnyp, Martin L.
    Lenz-Wiedemann, Victoria I. S.
    Rascher, Uwe
    Bareth, Georg
    REMOTE SENSING, 2015, 7 (08) : 10646 - 10667
  • [28] Estimation of rice yield based on integration remote sensing information and crop model
    Guo, Jianmao
    Qi, Wang
    Zheng Tengfei
    Li Xujie
    Shi Junyi
    Zhu Jinhui
    REMOTE SENSING AND MODELING OF ECOSYSTEMS FOR SUSTAINABILITY IX, 2012, 8513
  • [29] Remote sensing-based changes in the Ukhia Forest, Bangladesh
    Nilufa Akhtar
    Mohammad Kutub Uddin
    Yumin Tan
    GeoJournal, 2022, 87 : 4269 - 4287
  • [30] Sensitivity of Evapotranspiration Components in Remote Sensing-Based Models
    Talsma, Carl J.
    Good, Stephen P.
    Miralles, Diego G.
    Fisher, Joshua B.
    Martens, Brecht
    Jimenez, Carlos
    Purdy, Adam J.
    REMOTE SENSING, 2018, 10 (10)