Challenges of Developing Robust AI for Intrapartum Fetal Heart Rate Monitoring

被引:17
作者
O'Sullivan, M. E. [1 ]
Considine, E. C. [1 ]
O'Riordan, M. [1 ,2 ]
Marnane, W. P. [1 ,3 ]
Rennie, J. M. [4 ]
Boylan, G. B. [1 ,5 ]
机构
[1] Univ Coll Cork, INFANT Res Ctr, Cork, Ireland
[2] Univ Coll Cork, Dept Obstet & Gynaecol, Cork, Ireland
[3] Univ Coll Cork, Sch Engn, Cork, Ireland
[4] UCL, Inst Womens Hlth, London, England
[5] Univ Coll Cork, Dept Paediat & Child Hlth, Cork, Ireland
来源
FRONTIERS IN ARTIFICIAL INTELLIGENCE | 2021年 / 4卷
基金
爱尔兰科学基金会;
关键词
cardiotocography (CTG); fetal heart rate (FHR); hypoxic ischaemic encephalopathy (HIE); labour; pregnancy; fetal hypoxia; artificial intelligence; machine learning; RATE SIGNAL; CARDIOTOCOGRAPHY; GUIDELINES; AGREEMENT; CONSENSUS; SYSTEM; LABOR;
D O I
10.3389/frai.2021.765210
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Background: CTG remains the only non-invasive tool available to the maternity team for continuous monitoring of fetal well-being during labour. Despite widespread use and investment in staff training, difficulty with CTG interpretation continues to be identified as a problem in cases of fetal hypoxia, which often results in permanent brain injury. Given the recent advances in AI, it is hoped that its application to CTG will offer a better, less subjective and more reliable method of CTG interpretation. Objectives: This mini-review examines the literature and discusses the impediments to the success of AI application to CTG thus far. Prior randomised control trials (RCTs) of CTG decision support systems are reviewed from technical and clinical perspectives. A selection of novel engineering approaches, not yet validated in RCTs, are also reviewed. The review presents the key challenges that need to be addressed in order to develop a robust AI tool to identify fetal distress in a timely manner so that appropriate intervention can be made. Results: The decision support systems used in three RCTs were reviewed, summarising the algorithms, the outcomes of the trials and the limitations. Preliminary work suggests that the inclusion of clinical data can improve the performance of AI-assisted CTG. Combined with newer approaches to the classification of traces, this offers promise for rewarding future development.
引用
收藏
页数:8
相关论文
共 46 条
[1]   Continuous cardiotocography (CTG) as a form of electronic fetal monitoring (EFM) for fetal assessment during labour [J].
Alfirevic, Zarko ;
Devane, Declan ;
Gyte, Gillian M. L. ;
Cuthbert, Anna .
COCHRANE DATABASE OF SYSTEMATIC REVIEWS, 2017, (02)
[2]   FIGO consensus guidelines on intrapartum fetal monitoring: Cardiotocography [J].
Ayres-de-Campos, Diogo ;
Spong, Catherine Y. ;
Chandraharan, Edwin .
INTERNATIONAL JOURNAL OF GYNECOLOGY & OBSTETRICS, 2015, 131 (01) :13-24
[3]   Omniview-SisPorto® 3.5 -: a central fetal monitoring station with online alerts based on computerized cardiotocogram plus ST event analysis [J].
Ayres-de-Campos, Diogo ;
Sousa, Paulo ;
Costa, Antonia ;
Bernardes, Joao .
JOURNAL OF PERINATAL MEDICINE, 2008, 36 (03) :260-264
[4]   Use of artificial intelligence (AI) in the interpretation of intrapartum fetal heart rate (FHR) tracings: a systematic review and meta-analysis [J].
Balayla, Jacques ;
Shrem, Guy .
ARCHIVES OF GYNECOLOGY AND OBSTETRICS, 2019, 300 (01) :7-14
[5]  
Beard R. W., 1974, FETAL HEART RATE PAT
[6]   Computerised interpretation of fetal heart rate during labour (INFANT): a randomised controlled trial [J].
Brocklehurst, Peter ;
Johns, Nina ;
Johnston, Tracey ;
Barnfield, Gemma ;
Davies, Karen ;
Johnson, Mark ;
Patterson, Holly ;
Montague, Imogen ;
Watmore, Sally ;
Stolton, Alison ;
Parisaei, Maryam ;
McGhee, Natasha ;
Segovia, Silvia ;
Martindale, Elizabeth ;
Jackson, Hilary ;
Holleran, Josephine ;
Roberts, Devender ;
Holt, Siobhan ;
Dragovic, Bosko ;
Willmott-Powell, Miriam ;
Hutchinson, Laura ;
Toth, Benedek ;
Chandler, Gemma ;
Ridley, Suzanne ;
Bugg, George ;
Molnar, Anna ;
Lochrie, Denise ;
Connor, Jillian ;
Howe, David ;
Head, Katie ;
Wellstead, Sue ;
Mathers, Alan ;
Walker, Laura ;
Crawford, Isobel ;
Davies, David ;
Garner, Zoe ;
Galloway, Lucy ;
Bugg, George ;
Davies, Yvette ;
Smith, Carys ;
Perkins, Gill ;
Geary, Mike ;
Walsh, Fiona ;
Nagle, Ursula ;
Martindale, Elizabeth ;
Jackson, Hilary ;
O'Malley, Louise ;
Katakam, Narmada ;
White, Heather ;
Tanton, Emma .
LANCET, 2017, 389 (10080) :1719-1729
[7]   Intrapartum cardiotocography with and without computer analysis: a systematic review and meta-analysis of randomized controlled trials [J].
Campanile, Marta ;
D'Alessandro, Pietro ;
Della Corte, Luigi ;
Saccone, Gabriele ;
Tagliaferri, Salvatore ;
Arduino, Bruno ;
Esposito, Giuseppina ;
Esposito, Francesca Giovanna ;
Raffone, Antonio ;
Signorini, Maria Gabriella ;
Magenes, Giovanni ;
Di Tommaso, Mariarosaria ;
Xodo, Serena ;
Zullo, Fulvio ;
Berghella, Vincenzo .
JOURNAL OF MATERNAL-FETAL & NEONATAL MEDICINE, 2020, 33 (13) :2284-2290
[8]   Open access intrapartum CTG database [J].
Chudacek, Vaclav ;
Spilka, Jiri ;
Bursa, Miroslav ;
Janku, Petr ;
Hruban, Lukas ;
Huptych, Michal ;
Lhotska, Lenka .
BMC PREGNANCY AND CHILDBIRTH, 2014, 14
[9]   Rates of metabolic acidosis at birth and Apgar score values at 1, 5, and 10 min in term infants: a Swedish cohort study [J].
Cnattingius, Sven ;
Johansson, Stefan ;
Razaz, Neda .
JOURNAL OF PERINATAL MEDICINE, 2020, 48 (05) :514-515
[10]  
Costa MA, 2010, J PERINAT MED, V38, P191, DOI 10.1515/jpm.2010.030