Reproducibility in Quantum Computing

被引:3
作者
Dasgupta, Samudra [1 ,2 ]
Humble, Travis S. [1 ,2 ]
机构
[1] Univ Tennessee, Bredesen Ctr, Knoxville, TN 37916 USA
[2] Oak Ridge Natl Lab, Quantum Sci Ctr, POB 2009, Oak Ridge, TN 37830 USA
来源
2021 IEEE COMPUTER SOCIETY ANNUAL SYMPOSIUM ON VLSI (ISVLSI 2021) | 2021年
关键词
Fidelity asymmetry; Quantum computing; Reproducibility; Hellinger distance;
D O I
10.1109/ISVLSI51109.2021.00090
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Reproducibility is important for validating the performance of applications in quantum computing as a measure of consistency in computation. Current noisy, intermediate-scale devices quantum (NISQ) devices are strongly affected by intrinsic noise that leads to a variety of computational error mechanisms. Here we assess reproducibility of NISQ computing by focusing on a specific simple error mechanism that arises during noisy readout. Using an asymmetric channel for binary readout, we develop an analytic bound on the Hellinger distance between computational outputs for different readout parameters. We validate this model using characterization and testing of the IBM toronto device, which displays a range of readout parameters. We find that to ensure reproducibility, one must avoid using register elements characterized by fidelity asymmetry exceeding a threshold.
引用
收藏
页码:458 / 461
页数:4
相关论文
共 10 条
[1]   Characterizing the Stability of NISQ Devices [J].
Dasgupta, Samudra ;
Humble, Travis S. .
IEEE INTERNATIONAL CONFERENCE ON QUANTUM COMPUTING AND ENGINEERING (QCE20), 2020, :419-429
[2]  
DiVincenzo DP, 2000, FORTSCHR PHYS, V48, P771, DOI 10.1002/1521-3978(200009)48:9/11<771::AID-PROP771>3.0.CO
[3]  
2-E
[4]   Rigorous measurement error correction [J].
Geller, Michael R. .
QUANTUM SCIENCE AND TECHNOLOGY, 2020, 5 (03)
[5]  
Hamilton K. E., 2020, QUANT MACH INTELL, V2, P1
[6]   Error mitigation extends the computational reach of a noisy quantum processor [J].
Kandala, Abhinav ;
Temme, Kristan ;
Corcoles, Antonio D. ;
Mezzacapo, Antonio ;
Chow, Jerry M. ;
Gambetta, Jay M. .
NATURE, 2019, 567 (7749) :491-+
[7]   Qubit metrology for building a fault-tolerant quantum computer [J].
Martinis, John M. .
NPJ QUANTUM INFORMATION, 2015, 1
[8]  
Preskill J., 2019, B AM PHYS SOC, V64
[9]   Error Mitigation for Short-Depth Quantum Circuits [J].
Temme, Kristan ;
Bravyi, Sergey ;
Gambetta, Jay M. .
PHYSICAL REVIEW LETTERS, 2017, 119 (18)
[10]   Just-in-time Quantum Circuit Transpilation Reduces Noise [J].
Wilson, Ellis ;
Singh, Sudhakar ;
Mueller, Frank .
IEEE INTERNATIONAL CONFERENCE ON QUANTUM COMPUTING AND ENGINEERING (QCE20), 2020, :345-355