Change Detection From Very-High-Spatial-Resolution Optical Remote Sensing Images: Methods, applications, and future directions

被引:160
作者
Wen, Dawei [1 ]
Huang, Xin [2 ,3 ]
Bovolo, Francesca [4 ,5 ]
Li, Jiayi [6 ]
Ke, Xinli [1 ]
Zhang, Anlu [7 ]
Benediktsson, Jon Atli [8 ,9 ]
机构
[1] Huazhong Agr Univ, Coll Publ Adm, Wuhan 430070, Peoples R China
[2] Wuhan Univ, Wuhan 430079, Peoples R China
[3] Wuhan Univ, Sch Remote Sensing & Informat Engn, Inst Remote Sensing Informat Proc, Wuhan, Peoples R China
[4] Fdn Bruno Kessler, Remote Sensing Digital Earth Unit, I-38123 Trento, Italy
[5] Remote Sensing Lab, Trento, Italy
[6] Wuhan Univ, Sch Remote Sensing & Informat Engn, Wuhan 430079, Peoples R China
[7] Huazhong Agr Univ, Wuhan 430070, Peoples R China
[8] Univ Iceland, Fac Elect & Comp Engn, Reykjavik, Iceland
[9] Univ Iceland, Elect & Comp Engn, Reykjavik, Iceland
关键词
Feature extraction; Sensors; Remote sensing; Buildings; Image sensors; Satellites; Clouds; BUILDING CHANGE DETECTION; UNSUPERVISED CHANGE DETECTION; MARKOV RANDOM-FIELD; CHANGE VECTOR ANALYSIS; LAND-USE CHANGE; URBAN FUNCTIONAL ZONES; SATELLITE IMAGES; SHADOW DETECTION; TIME-SERIES; DATA FUSION;
D O I
10.1109/MGRS.2021.3063465
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Change detection is a vibrant area of research in remote sensing. Thanks to increases in the spatial resolution of remote sensing images, subtle changes at a finer geometrical scale can now be effectively detected. However, change detection from very-high-spatial-resolution (VHR) (≤5 m) remote sensing images is challenging due to limited spectral information, spectral variability, geometric distortion, and information loss. To address these challenges, many change detection algorithms have been developed. However, a comprehensive review of change detection in VHR images is lacking in the existing literature. This review aims to fill the gap and mainly includes three aspects: methods, applications, and future directions. © 2013 IEEE.
引用
收藏
页码:68 / 101
页数:34
相关论文
共 242 条
[1]   Street-view change detection with deconvolutional networks [J].
Alcantarilla, Pablo F. ;
Stent, Simon ;
Ros, German ;
Arroyo, Roberto ;
Gherardi, Riccardo .
AUTONOMOUS ROBOTS, 2018, 42 (07) :1301-1322
[2]   Change Detection Using Global and Local Multifractal Description [J].
Aleksandrowicz, Sebastian ;
Wawrzaszek, Anna ;
Drzewiecki, Wojciech ;
Krupinski, Michal .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2016, 13 (08) :1183-1187
[3]   Generation and Quality Assessment of Stereo-Extracted DSM from GeoEye-1 and WorldView-2 Imagery [J].
Angel Aguilar, Manuel ;
del Mar Saldana, Maria ;
Jose Aguilar, Fernando .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2014, 52 (02) :1259-1271
[4]  
[Anonymous], 2012, ISPRS Ann. Photogramm., Remote Sens. Spatial Inf. Sci.
[5]   Quantification of crown changes and change uncertainty of trees in an urban environment [J].
Ardila, Juan P. ;
Bijker, Wietske ;
Tolpekin, Valentyn A. ;
Stein, Alfred .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2012, 74 :41-55
[6]   Multitemporal change detection of urban trees using localized region-based active contours in VHR images [J].
Ardila, Juan P. ;
Biker, Wietske ;
Tolpekin, Valentyn A. ;
Stein, Alfred .
REMOTE SENSING OF ENVIRONMENT, 2012, 124 :413-426
[7]   Building change detection through multi-scale GEOBIA approach by integrating deep belief networks with fuzzy ontologies [J].
Argyridis, Argyros ;
Argialas, Demetre P. .
INTERNATIONAL JOURNAL OF IMAGE AND DATA FUSION, 2016, 7 (02) :148-171
[8]   Quantifying and Mapping Ecosystem Services Supplies and Demands: A Review of Remote Sensing Applications [J].
Ayanu, Yohannes Zergaw ;
Conrad, Christopher ;
Nauss, Thomas ;
Wegmann, Martin ;
Koellner, Thomas .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2012, 46 (16) :8529-8541
[9]   PPCNET: A Combined Patch-Level and Pixel-Level End-to-End Deep Network for High-Resolution Remote Sensing Image Change Detection [J].
Bao, Tengfei ;
Fu, Chenqin ;
Fang, Tao ;
Huo, Hong .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2020, 17 (10) :1797-1801
[10]   UAV-based Imaging for Multi-Temporal, very high Resolution Crop Surface Models to monitor Crop Growth Variability [J].
Bendig, Juliane ;
Bolten, Andreas ;
Bareth, Georg .
PHOTOGRAMMETRIE FERNERKUNDUNG GEOINFORMATION, 2013, (06) :551-562