Phase-Controllable Synthesis of Multifunctional 1T-MoSe2 Nanostructures: Applications in Lithium-Ion Batteries, Electrocatalytic Hydrogen Evolution, and the Hydrogenation Reaction

被引:7
作者
Ling, Min [1 ]
Jiang, Binbin [2 ,3 ]
Cao, Xi [1 ]
Wu, Tao [1 ]
Cheng, Yuansheng [2 ]
Zeng, Peiyuan [1 ]
Zhang, Liang [1 ]
Cheong, Weng-Chon Max [4 ]
Wu, Konglin [1 ,2 ]
Huang, Aijian [5 ]
Wei, Xianwen [1 ,2 ]
机构
[1] Anhui Normal Univ, Minist Educ, Key Lab Funct Mol Solids, Coll Chem & Mat Sci, Wuhu 241002, Peoples R China
[2] Anhui Univ Technol, Sch Chem & Chem Engn, Anhui Prov Key Lab Coal Clean Convers & High Valu, Inst Clean Energy & Adv Nanocatalysis iClean, Maanshan 243002, Peoples R China
[3] Anqing Normal Univ, Sch Chem & Chem Engn, Anqing 246001, Peoples R China
[4] Univ Macau, Dept Phys & Chem, Fac Sci & Technol, Macau 999078, Peoples R China
[5] Univ Elect Sci & Technol China, Sch Elect Sci & Engn, Chengdu 610054, Peoples R China
基金
中国国家自然科学基金;
关键词
MoSe2; lithium-ion batteries; hydrogen evolution reaction; transfer hydrogenation; phase engineering; CATALYTIC-ACTIVITY; PERFORMANCE; NANOSHEETS; MOSE2; MORPHOLOGY; MONOLAYER; ANODES; 1T; HETEROSTRUCTURE; 4-NITROPHENOL;
D O I
10.1002/celc.202101146
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
As an important regulatory method, the phase engineering strategy is widely used to develop functional materials with desired properties. Herein, we combine a solvothermal method with post-annealing treatment to controllably synthesize multifunctional MoSe2 flower-like nanostructures (FNSs) in different crystal phases. Based on the different phases of MoSe2 FNSs, we systematically investigate their performance in lithium-ion storage, the hydrogen evolution reaction (HER), and the hydrogenation of nitrophenol. The results show that 1T-MoSe2 FNSs possess superior performance in lithium-ion batteries, HER, and hydrogenation of PNP compared with 2H-MoSe2 FNSs. Moreover, density functional theory calculations reveal that 1T-MoSe2 FNSs exhibits a higher chemisorption energy than that of 2H-MoSe2 FNSs, which is beneficial for the improvement of the lithium-ion storage capacity. This work provides an effective way to develop functional materials based on phase engineering.
引用
收藏
页码:4148 / 4155
页数:8
相关论文
共 69 条
[41]   Ab Initio Prediction and Characterization of Mo2C Monolayer as Anodes for Lithium-Ion and Sodium-Ion Batteries [J].
Sun, Qilong ;
Dai, Ying ;
Ma, Yandong ;
Jing, Tao ;
Wei, Wei ;
Huang, Baibiao .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2016, 7 (06) :937-943
[42]   Sulfiphilic Few-Layered MoSe2 Nanoflakes Decorated rGO as a Highly Efficient Sulfur Host for Lithium-Sulfur Batteries [J].
Tian, Wenzhi ;
Xi, Baojuan ;
Feng, Zhenyu ;
Li, Haibo ;
Feng, Jinkui ;
Xiong, Shenglin .
ADVANCED ENERGY MATERIALS, 2019, 9 (36)
[43]   Facile method to synthesis hybrid phase 1T@2H MoSe2 nanostructures for rechargeable lithium ion batteries [J].
Vikraman, Dhanasekaran ;
Hussain, Sajjad ;
Prasanna, K. ;
Karuppasamy, K. ;
Jung, Jongwan ;
Kim, Hyun-Seok .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2019, 833 :333-339
[44]   Phase engineering of a multiphasic 1T/2H MoS2 catalyst for highly efficient hydrogen evolution [J].
Wang, Dezhi ;
Zhang, Xiangyong ;
Bao, Siyuan ;
Zhang, Zhongting ;
Fei, Hao ;
Wu, Zhuangzhi .
JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (06) :2681-2688
[45]   Li1.2Ni0.13Co0.13Mn0.54O2 with Controllable Morphology and Size for High Performance Lithium-Ion Batteries [J].
Wang, Gang ;
Yi, Liling ;
Yu, Ruizhi ;
Wang, Xianyou ;
Wang, Yu ;
Liu, Zhongshu ;
Wu, Bing ;
Liu, Min ;
Zhang, Xiaohui ;
Yang, Xiukang ;
Xiong, Xunhui ;
Liu, Meilin .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (30) :25358-25368
[46]   Phase Transition Mechanism and Electrochemical Properties of Nanocrystalline MoSe2 as Anode Materials for the High Performance Lithium-Ion Battery [J].
Wang, Hui ;
Wang, Xiaoyan ;
Wang, Li ;
Wang, Jin ;
Jiang, Danlu ;
Li, Guopen ;
Zhang, Yan ;
Zhong, Honghai ;
Jiang, Yang .
JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (19) :10197-10205
[47]   Copper oxide hierarchical morphology derived from MOF precursors for enhancing ethanol vapor sensing performance [J].
Wang, Sha ;
Gao, Zhimin ;
Song, Guoshuai ;
Yu, Yantao ;
He, Wenxiu ;
Li, Linlin ;
Wang, Tieqiang ;
Fan, Fuqiang ;
Li, Yunong ;
Zhang, Liying ;
Zhang, Xuemin ;
Fu, Yu ;
Qi, Wei .
JOURNAL OF MATERIALS CHEMISTRY C, 2020, 8 (28) :9671-9677
[48]   Probing the Energy Storage Mechanism of Quasi-Metallic Na in Hard Carbon for Sodium-Ion Batteries [J].
Wang, Zhaohua ;
Feng, Xin ;
Bai, Ying ;
Yang, Haoyi ;
Dong, Ruiqi ;
Wang, Xinran ;
Xu, Huajie ;
Wang, Qiyu ;
Li, Hong ;
Gao, Hongcai ;
Wu, Chuan .
ADVANCED ENERGY MATERIALS, 2021, 11 (11)
[49]   Atomically dispersed Ni-Ru-P interface sites for high-efficiency pH-universal electrocatalysis of hydrogen evolution [J].
Wu, Konglin ;
Sun, Kaian ;
Liu, Shoujie ;
Cheong, Weng-Chon ;
Chen, Zheng ;
Zhang, Chao ;
Pan, Yuan ;
Cheng, Yuansheng ;
Zhuang, Zewen ;
Wei, Xianwen ;
Wang, Yu ;
Zheng, Lirong ;
Zhang, Qinghua ;
Wang, Dingsheng ;
Peng, Qing ;
Chen, Chen ;
Li, Yadong .
NANO ENERGY, 2021, 80
[50]   Multiphasic 1T@2H MoSe2 as a highly efficient catalyst for the N2 reduction to NH3 [J].
Wu, Zhuangzhi ;
Zhang, Rongbin ;
Fei, Hao ;
Liu, Ruoqi ;
Wang, Dezhi ;
Liu, Xinli .
APPLIED SURFACE SCIENCE, 2020, 532