Martin boundaries associated with a killed random walk

被引:11
作者
Alili, L [1 ]
Doney, RA [1 ]
机构
[1] Univ Manchester, Manchester M13 9PL, Lancs, England
来源
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES | 2001年 / 37卷 / 03期
关键词
D O I
10.1016/S0246-0203(00)01069-4
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We start by studying the connection between the full Martin boundary associated with a space time version of a random walk which is killed on entering the negative half-line, and that associated with the bivariate renewal process of weak increasing ladder heights and times in the random walk. We show that although the corresponding spatial boundaries are isomorphic, the space time boundaries are not. The rest of the paper is devoted to determining these boundaries explicitly in the special case that the moment generating function of the step distribution exists in a non-empty interval. (C) 2001 Editions scientifiques et medicales Elsevier SAS.
引用
收藏
页码:313 / 338
页数:26
相关论文
共 12 条
[1]  
Alili L., 1999, STOCHASTICS STOCHAST, V66, P87
[2]  
BERTOIN J, 1994, LECT NOTES MATH, P116
[3]   LAST EXIT TIMES FOR RANDOM-WALKS [J].
DONEY, RA .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1989, 31 (02) :321-331
[4]   The Martin boundary and ratio limit theorems for killed random walks [J].
Doney, RA .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1998, 58 :761-768
[5]   One-sided local large deviation and renewal theorems in the case of infinite mean [J].
Doney, RA .
PROBABILITY THEORY AND RELATED FIELDS, 1997, 107 (04) :451-465
[6]  
DONEY RA, IN PRESS B LONDON MA
[7]  
Doob J. L., 1960, CALIF CONTRIBUTIONS, P182
[8]  
Feller W., 1968, INTRO PROBABILITY TH, V2
[9]   LIMIT-THEOREMS FOR RANDOM-WALKS CONDITIONED TO STAY POSITIVE [J].
KEENER, RW .
ANNALS OF PROBABILITY, 1992, 20 (02) :801-824
[10]  
KESTEN H, 1963, JAM, P223