A Sparsity Adaptive Algorithm to Recover NB-IoT Signal From Legacy LTE Interference

被引:5
作者
Guo, Yijia [1 ]
Wen, Wenkun [2 ]
Wu, Peiran [1 ]
Xia, Minghua [1 ]
机构
[1] Sun Yat Sen Univ, Sch Elect & Informat Technol, Guangzhou 510006, Peoples R China
[2] Guangzhou Techphant Co Ltd, R&D Dept, Guangzhou 510310, Peoples R China
基金
中国国家自然科学基金;
关键词
Terms-K-means clustering; LTE interference; narrow-band Internet of Things; sparse recovery; PURSUIT;
D O I
10.1109/LWC.2021.3112791
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
As a forerunner in 5G technologies, Narrowband Internet of Things (NB-IoT) will be inevitably coexisting with the legacy Long-Term Evolution (LTE) system. Thus, it is imperative for NB-IoT to mitigate LTE interference. By virtue of the strong temporal correlation of the NB-IoT signal, this letter develops a sparsity adaptive algorithm to recover the NB-IoT signal from legacy LTE interference, by combining K-means clustering and sparsity adaptive matching pursuit (SAMP). In particular, the support of the NB-IoT signal is first estimated coarsely by K-means clustering and SAMP algorithm without sparsity limitation. Then, the estimated support is refined by a repeat mechanism. Simulation results demonstrate the effectiveness of the developed algorithm in terms of recovery probability and bit error rate, compared with competing algorithms.
引用
收藏
页码:2703 / 2707
页数:5
相关论文
共 14 条
  • [1] Al-Tous H., 2016, P IEEE WIR COMM NETW, P1, DOI DOI 10.1109/PIMRC.2016.7794716
  • [2] ALTOUS H, 2018, IEEE ICC, pNI146
  • [3] [Anonymous], 2018, 3GPP Standard TS 36.211.
  • [4] [Anonymous], 2006, Pattern Recognitionand Machine Learning. Information Science and Statistics, DOI DOI 10.1007/978-0-387-45528-09
  • [5] Subspace Pursuit for Compressive Sensing Signal Reconstruction
    Dai, Wei
    Milenkovic, Olgica
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2009, 55 (05) : 2230 - 2249
  • [6] Iteratively Reweighted Least Squares Minimization for Sparse Recovery
    Daubechies, Ingrid
    Devore, Ronald
    Fornasier, Massimo
    Guentuerk, C. Sinan
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2010, 63 (01) : 1 - 38
  • [7] SPARSITY ADAPTIVE MATCHING PURSUIT ALGORITHM FOR PRACTICAL COMPRESSED SENSING
    Do, Thong T.
    Gan, Lu
    Nguyen, Nam
    Tran, Trac D.
    [J]. 2008 42ND ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS AND COMPUTERS, VOLS 1-4, 2008, : 581 - +
  • [8] Gomaa A., 2010, IEEE GLOB TEL C GLOB, P1
  • [9] Guo Y., 2021, PSYCHOL HEALTH MED, P1, DOI DOI 10.1080/13548506.2021.1999994
  • [10] Eliminating NB-IoT Interference to LTE System: A Sparse Machine Learning-Based Approach
    Liu, Sicong
    Xiao, Liang
    Han, Zhu
    Tang, Yuliang
    [J]. IEEE INTERNET OF THINGS JOURNAL, 2019, 6 (04): : 6919 - 6932