The VC-dimension of axis-parallel boxes on the Torus

被引:1
作者
Gillibert, P. [1 ]
Lachmann, T. [2 ]
Muellner, C. [1 ]
机构
[1] TU Wien, Inst Diskrete Math & Geometrie, Wiedner Hauptstr 8-10, A-1040 Vienna, Austria
[2] JKU Linz, Inst Finanzmath & Angew Zahlentheorie, A-4040 Linz, Austria
基金
奥地利科学基金会;
关键词
VC-dimension; Discrepancy Theory; Measure Theory; Machine Learning; Sample Compression; Points on the Torus; DISCREPANCY;
D O I
10.1016/j.jco.2021.101600
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We show in this paper that the VC-dimension of the family of d-dimensional axis-parallel boxes and cubes on the d-dimensional torus are both asymptotically d log(2) d. This is especially surprising as in most other examples the VC-dimension usually grows linearly with d in similar settings. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页数:14
相关论文
共 18 条
[11]   Sample Compression Schemes for VC Classes [J].
Moran, Shay ;
Yehudayoff, Amir .
JOURNAL OF THE ACM, 2016, 63 (03)
[12]  
Moran Shay, 2017, A Journey Through Discrete Mathematics: A Tribute to Jir.i Matousek, P633
[13]  
Rudolf D., 2018, Contemporary Computational Mathematics-A Celebration of the 80th Birthday of Ian Sloan, P1099
[14]  
Shalev-Shwartz S., 2014, UNDERSTANDING MACHIN, P137, DOI DOI 10.1017/CBO9781107298019
[15]  
van der Vaart A. W., 1996, Weak Convergence and Empirical Processes
[16]  
van der Vaart Aad, 2009, Inst Math Stat Collect, V5, P103
[17]  
Vapnik V., 1998, Statistical Learning Theory
[18]   UNIFORM CONVERGENCE OF RELATIVE FREQUENCIES OF EVENTS TO THEIR PROBABILITIES [J].
VAPNIK, VN ;
CHERVONENKIS, AY .
THEORY OF PROBILITY AND ITS APPLICATIONS,USSR, 1971, 16 (02) :264-+