The VC-dimension of axis-parallel boxes on the Torus

被引:1
作者
Gillibert, P. [1 ]
Lachmann, T. [2 ]
Muellner, C. [1 ]
机构
[1] TU Wien, Inst Diskrete Math & Geometrie, Wiedner Hauptstr 8-10, A-1040 Vienna, Austria
[2] JKU Linz, Inst Finanzmath & Angew Zahlentheorie, A-4040 Linz, Austria
基金
奥地利科学基金会;
关键词
VC-dimension; Discrepancy Theory; Measure Theory; Machine Learning; Sample Compression; Points on the Torus; DISCREPANCY;
D O I
10.1016/j.jco.2021.101600
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We show in this paper that the VC-dimension of the family of d-dimensional axis-parallel boxes and cubes on the d-dimensional torus are both asymptotically d log(2) d. This is especially surprising as in most other examples the VC-dimension usually grows linearly with d in similar settings. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页数:14
相关论文
共 18 条
[1]  
[Anonymous], 1996, PROBABILISTIC THEORY
[2]  
Despres C.J.J., VAPNIK CHERVONENKIS
[3]  
Doliwa T, 2014, J MACH LEARN RES, V15, P3107
[4]  
Dudley RM, 2014, CAM ST AD M, V142, P1
[5]  
DUDLEY RM, 1984, LECT NOTES MATH, V1097, P1, DOI DOI 10.1007/BFB0099432
[6]   The inverse of the star-discrepancy depends linearly on the dimension [J].
Heinrich, S ;
Novak, E ;
Wasilkowski, GW ;
Wozniakowski, H .
ACTA ARITHMETICA, 2001, 96 (03) :279-302
[7]  
Hinrichs A, 2004, J COMPLEXITY, V20, P477, DOI [10.1016/j.jco.2004.01.001, 10.1016/j Jco.2004.01.001]
[8]   DISCREPANCY AND APPROXIMATIONS FOR BOUNDED VC-DIMENSION [J].
MATOUSEK, J ;
WELZL, E ;
WERNISCH, L .
COMBINATORICA, 1993, 13 (04) :455-466
[9]  
Matousek J, 1999, GEOMETRIC DISCREPANC, V18
[10]  
Mohri M., 2018, Foundations of machine learning