Silicon diffusion in aluminum for rear passivated solar cells

被引:60
|
作者
Urrejola, Elias [1 ]
Peter, Kristian [2 ]
Plagwitz, Heiko [2 ]
Schubert, Gunnar [2 ]
机构
[1] Int Solar Energy Res Ctr ISC Konstanz, D-78467 Constance, Germany
[2] Sunways AG, D-78467 Constance, Germany
关键词
SURFACE PASSIVATION; BACK CONTACT; SI;
D O I
10.1063/1.3579541
中图分类号
O59 [应用物理学];
学科分类号
摘要
We show that the lateral spread of silicon in a screen-printed aluminum layer increases by (1.50 +/- 0.06) mu m/degrees C, when increasing the peak firing temperature within an industrially applicable range. In this way, the maximum spread limit of diffused silicon in aluminum is predictable and does not depend on the contact area size but on the firing temperature. Therefore, the geometry of the rear side pattern can influence not only series resistance losses within the solar cell but the process of contact formation itself. In addition, too fast cooling lead to Kirkendall void formations instead of an eutectic layer. (C) 2011 American Institute of Physics. [doi:10.1063/1.3579541]
引用
收藏
页数:3
相关论文
共 50 条
  • [1] Silicon diffusion in aluminum for rear passivated solar cells (vol 98, 153508, 2011)
    Urrejola, Elias
    Peter, Kristian
    Plagwitz, Heiko
    Schubert, Gunnar
    APPLIED PHYSICS LETTERS, 2011, 98 (19)
  • [2] Distribution of Silicon in the Aluminum Matrix for Rear Passivated Solar Cells
    Urrejola, E.
    Peter, K.
    Plagwitz, H.
    Schubert, G.
    PROCEEDINGS OF THE SILICONPV 2011 CONFERENCE (1ST INTERNATIONAL CONFERENCE ON CRYSTALLINE SILICON PHOTOVOLTAICS), 2011, 8 : 331 - 336
  • [3] Aluminum Alloying in Local Contact Areas on Dielectrically Passivated Rear Surfaces of Silicon Solar Cells
    Rauer, Michael
    Woehl, Robert
    Ruehle, Karola
    Schmiga, Christian
    Hermle, Martin
    Hoerteis, Matthias
    Biro, Daniel
    IEEE ELECTRON DEVICE LETTERS, 2011, 32 (07) : 916 - 918
  • [4] Investigation of Aluminum-Alloyed Local Contacts for Rear Surface-Passivated Silicon Solar Cells
    Rauer, Michael
    Schmiga, Christian
    Woehl, Robert
    Ruehle, Karola
    Hermle, Martin
    Hoerteis, Matthias
    Biro, Daniel
    Glunz, Stefan W.
    IEEE JOURNAL OF PHOTOVOLTAICS, 2011, 1 (01): : 22 - 28
  • [5] Optical modeling of the rear surface roughness of passivated silicon solar cells
    Greulich, J.
    Woehrle, N.
    Glatthaar, M.
    Rein, S.
    PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON CRYSTALLINE SILICON PHOTOVOLTAICS (SILICONPV 2012), 2012, 27 : 234 - 239
  • [6] Industrial rear SiN-passivated multicrystalline silicon solar cells
    Rinio, Markus
    Borchert, Dietmar
    Mueller, Stefan
    Riepe, Stephan
    Toelle, Rainer
    Janssen, Lars
    Kurz, Heinrich
    CONFERENCE RECORD OF THE 2006 IEEE 4TH WORLD CONFERENCE ON PHOTOVOLTAIC ENERGY CONVERSION, VOLS 1 AND 2, 2006, : 1275 - +
  • [7] Optimization of laser processes for local rear contacting of passivated silicon solar cells
    Colina, M.
    Martin, I.
    Voz, C.
    Morales-Vilches, A.
    Ortega, P.
    Lopez, G.
    Orpella, A.
    Garcia-Molina, M.
    Munoz-Martin, D.
    Sanchez-Aniorte, M. I.
    Molpeceres, C.
    Alcubilla, R.
    PROCEEDINGS OF E-MRS SPRING MEETING 2013 SYMPOSIUM D ADVANCED INORGANIC MATERIALS AND STRUCTURES FOR PHOTOVOLTAICS, 2014, 44 : 234 - 243
  • [8] A Systematic Loss Analysis Method for Rear-Passivated Silicon Solar Cells
    Wong, Johnson
    Duttagupta, Shubham
    Stangl, Rolf
    Hoex, Bram
    Aberle, Armin G.
    IEEE JOURNAL OF PHOTOVOLTAICS, 2015, 5 (02): : 619 - 626
  • [9] biPERC silicon solar cells enabling bifacial applications for industrial solar cells with passivated rear sides
    Krauss, Karin
    Fertig, Fabian
    Greulich, Johannes
    Rein, Stefan
    Preu, Ralf
    PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2016, 213 (01): : 68 - 71
  • [10] Technology route towards industrial application of rear passivated silicon solar cells
    Rentsch, J.
    Schultz, O.
    Grohe, A.
    Biro, D.
    Preu, R.
    Willeke, G. P.
    CONFERENCE RECORD OF THE 2006 IEEE 4TH WORLD CONFERENCE ON PHOTOVOLTAIC ENERGY CONVERSION, VOLS 1 AND 2, 2006, : 1008 - 1011