Bicomplex formulation and Moyal deformation of (2+1)-dimensional Fordy-Kulish systems

被引:15
作者
Dimakis, A [1 ]
Müller-Hoissen, F
机构
[1] Univ Aegean, Dept Math, GR-83200 Karlovassi, Greece
[2] Max Planck Inst Stromungsforsch, D-37073 Gottingen, Germany
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2001年 / 34卷 / 12期
关键词
D O I
10.1088/0305-4470/34/12/305
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Using bicomplex formalism we construct generalizations of Fordy-Kulish systems of matrix nonlinear Schrodinger equations on two-dimensional space-time in two respects. Firstly, we obtain corresponding equations in three space-time dimensions. Secondly, a Moyal deformation is applied to the space-time coordinates and the ordinary product of functions replaced by the Moyal product in a suitable way. Both generalizations preserve the existence of an infinite set of conservation laws.
引用
收藏
页码:2571 / 2581
页数:11
相关论文
共 43 条
  • [1] INTEGRABLE EQUATIONS IN (2+1) DIMENSIONS ASSOCIATED WITH SYMMETRICAL AND HOMOGENEOUS SPACES
    ATHORNE, C
    FORDY, A
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1987, 28 (09) : 2018 - 2024
  • [2] DEFORMATION THEORY AND QUANTIZATION .1. DEFORMATIONS OF SYMPLECTIC STRUCTURES
    BAYEN, F
    FLATO, M
    FRONSDAL, C
    LICHNEROWICZ, A
    STERNHEIMER, D
    [J]. ANNALS OF PHYSICS, 1978, 111 (01) : 61 - 110
  • [3] SOME REDUCTIONS OF THE SELF-DUAL YANG-MILLS EQUATIONS TO INTEGRABLE SYSTEMS IN 2+1-DIMENSIONS
    CHAKRAVARTY, S
    KENT, SL
    NEWMAN, ET
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1995, 36 (02) : 763 - 772
  • [4] CHENG HH, 1990, SSSA BOOK S, V2, P1
  • [5] Bi-differential calculi and bi-Hamiltonian systems
    Crampin, M
    Sarlet, W
    Thompson, G
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (20): : L177 - L180
  • [6] Bi-differential calculi, bi-Hamiltonian systems and conformal Killing tensors
    Crampin, M
    Sarlet, W
    Thompson, G
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (48): : 8755 - 8770
  • [7] Da Rios LS., 1906, Rend. Circ. Mat. Palermo, V22, P117, DOI DOI 10.1007/BF03018608
  • [8] Bicomplexes, integrable models, and noncommutative geometry
    Dimakis, A
    Müller-Hoissen, F
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2000, 14 (22-23): : 2455 - 2460
  • [9] Bicomplexes and integrable models
    Dimakis, A
    Müller-Hoissen, F
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (37): : 6579 - 6591
  • [10] Bi-differential calculi and integrable models
    Dimakis, A
    Müller-Hoissen, F
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (05): : 957 - 974