Catalytic Co-Pyrolysis of Kraft Lignin with Refuse-Derived Fuels Using Ni-Loaded ZSM-5 Type Catalysts

被引:13
作者
Lee, Hyung Won [1 ]
Cha, Jin Sun [1 ,2 ]
Park, Young-Kwon [1 ]
机构
[1] Univ Seoul, Sch Environm Engn, Seoul 02504, South Korea
[2] Korea Testing Lab, Seoul 08389, South Korea
基金
新加坡国家研究基金会;
关键词
Kraft lignin; refuse-derived fuels; nickel; desilication; catalytic co-pyrolysis; HIGH-DENSITY POLYETHYLENE; BIOMASS COMPONENTS; OIL; HYDRODEOXYGENATION; POLYPROPYLENE; COPYROLYSIS; CELLULOSE; BIOFUEL; PINE;
D O I
10.3390/catal8110506
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The catalytic co-pyrolysis (CCP) of Kraft lignin (KL) with refuse-derived fuels (RDF) over HZSM-5, Ni/HZSM-5, and NiDHZSM-5 (Ni/desilicated HZSM-5) was carried out using pyrolyzer-gas chromatography/mass spectrometry (Py-GC/MS) to determine the effects of the nickel loading, desilication of HZSM-5, and co-pyrolysis of KL with RDF. The catalysts were characterized by Brunauer-Emmett-Teller surface area, X-ray diffraction, and NH3-temperature programed desorption. The nickel-impregnated catalyst improved the catalytic upgrading efficiency and increased the aromatic hydrocarbon production. Compared to KL, the catalytic pyrolysis of RDF produced larger amounts of aromatic hydrocarbons due to the higher H/C-eff ratio. The CCP of KL with RDF enhanced the production of aromatic hydrocarbons by the synergistic effect of hydrogen rich feedstock co-feeding. In particular, Ni/DHZSM-5 showed higher aromatic hydrocarbon formation owing to its higher acidity and mesoporosity.
引用
收藏
页数:11
相关论文
共 39 条
[1]   Aqueous Phase Synthesis of Hydrocarbons from Reactions of Guaiacol and Low Molecular Weight Oxygenates [J].
Agblevor, Foster A. ;
Jahromi, Hossein .
CHEMCATCHEM, 2018, 10 (22) :5201-5214
[2]   A review on bio-fuel production from microalgal biomass by using pyrolysis method [J].
Azizi, Kolsoom ;
Moraveji, Mostafa Keshavarz ;
Najafabadi, Hamed Abedini .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2018, 82 :3046-3059
[3]   Production and utilization of biochar: A review [J].
Cha, Jin Sun ;
Park, Sung Hoon ;
Jung, Sang-Chul ;
Ryu, Changkook ;
Jeon, Jong-Ki ;
Shin, Min-Chul ;
Park, Young-Kwon .
JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2016, 40 :1-15
[4]  
Chen D, 2015, WASTE MANAGE, V37, P116, DOI 10.1016/j.wasman.2015.01.022
[5]   Lignin as co-product of second generation bioethanol production from ligno-cellulosic biomass [J].
Cotana, Franco ;
Cavalaglio, Gianluca ;
Nicolini, Andrea ;
Gelosia, Mattia ;
Coccia, Valentina ;
Petrozzi, Alessandro ;
Brinchi, Lucia .
ATI 2013 - 68TH CONFERENCE OF THE ITALIAN THERMAL MACHINES ENGINEERING ASSOCIATION, 2014, 45 :52-60
[6]   Lignin pyrolysis for profitable lignocellulosic biorefineries [J].
De Wild, Paul J. ;
Huijgen, Wouter J. J. ;
Gosselink, Richard J. A. .
BIOFUELS BIOPRODUCTS & BIOREFINING-BIOFPR, 2014, 8 (05) :645-657
[7]   Ex-situ catalytic co-pyrolysis of lignin and polypropylene to upgrade bio-oil quality by microwave heating [J].
Duan, Dengle ;
Wang, Yunpu ;
Dai, Leilei ;
Ruan, Roger ;
Zhao, Yunfeng ;
Fan, Liangliang ;
Tayier, Maimaitiaili ;
Liu, Yuhuan .
BIORESOURCE TECHNOLOGY, 2017, 241 :207-213
[8]   In-situ catalytic copyrolysis of cellulose and polypropylene over desilicated ZSM-5 [J].
Hong, Yeojin ;
Lee, Yejin ;
Rezaei, Pouya Sirous ;
Kim, Beom Sik ;
Jeon, Jong-Ki ;
Jae, Jungho ;
Jung, Sang-Chul ;
Kim, Sang Chai ;
Park, Young-Kwon .
CATALYSIS TODAY, 2017, 293 :151-158
[9]   Catalytic upgrading of biomass pyrolysis vapors using transition metal-modified ZSM-5 zeolite [J].
Iliopoulou, E. F. ;
Stefanidis, S. D. ;
Kalogiannis, K. G. ;
Delimitis, A. ;
Lappas, A. A. ;
Triantafyllidis, K. S. .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2012, 127 :281-290
[10]   Hydrodeoxygenation of Aqueous-Phase Catalytic Pyrolysis Oil to Liquid Hydrocarbons Using Multifunctional Nickel Catalyst [J].
Jahromi, Hossein ;
Agblevor, Foster A. .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2018, 57 (39) :13257-13268