Improvement of Photoelectrochemical and Stability Properties of Electrodeposited Cu2O Thin Films by Annealing Processes

被引:13
作者
Jamali, Soolmaz [1 ]
Moshaii, Ahmad [1 ]
Mohammadian, Nasim [1 ]
机构
[1] Tarbiat Modares Univ, Dept Phys, POB 14115-175, Tehran, Iran
来源
PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE | 2017年 / 214卷 / 12期
关键词
annealing; Cu2O; CuO; electrodeposition; photoelectrochemical water splitting; NANOWIRE ARRAYS; WATER; PHOTOCATHODES; PERFORMANCE;
D O I
10.1002/pssa.201700380
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The synthesization of Cu2O thin films by electrodeposition for photoelectrochemical water splitting is reported. The synthesized Cu2O samples are annealed at different temperatures between 300 and 500 degrees C. The XRD analysis and SEM images indicate that the sample without annealing includes Cu2O grains with pyramid shape. With annealing to more than 300 degrees C, due to the oxidization of the sample, a thin layer of CuO appears on the original Cu2O film and the crystalline signatures of such CuO structure increase with annealing at higher temperatures. The photoelectrochemical measurements indicate that annealing pure Cu2O by more than 300 degrees C, remarkably increases the photocurrent achieved from this photocathode. The effect is accompanied with considerable improvement of chemical stability of the original Cu2O electrode during water splitting. Such protection effect, which is originated from generation of CuO on the samples, increases with the annealing temperature up to 500 degrees C. However, the best photocurrent from the Cu2O/CuO composite is obtained from the annealing temperature of about 400 degrees C. The results of impedance analysis of various annealed samples indicate that annealing at a higher temperature, better charge transfer occurs both at the interface of photocathode/electrolyte and inside the photocathode.
引用
收藏
页数:7
相关论文
共 30 条
[21]   Ultrathin films on copper(I) oxide water splitting photocathodes: a study on performance and stability [J].
Paracchino, Adriana ;
Mathews, Nripan ;
Hisatomi, Takashi ;
Stefik, Morgan ;
Tilley, S. David ;
Graetzel, Michael .
ENERGY & ENVIRONMENTAL SCIENCE, 2012, 5 (09) :8673-8681
[22]  
Paracchino A, 2011, NAT MATER, V10, P456, DOI [10.1038/nmat3017, 10.1038/NMAT3017]
[23]   Improved Photoelectrochemical Water Splitting Performance of Cu2O/SrTiO3 Heterojunction Photoelectrode [J].
Sharma, Dipika ;
Upadhyay, Sumant ;
Satsangi, Vibha R. ;
Shrivastav, Rohit ;
Waghmare, Umesh V. ;
Dass, Sahab .
JOURNAL OF PHYSICAL CHEMISTRY C, 2014, 118 (44) :25320-25329
[24]   A CU2O/TiO2 heterojunction thin film cathode for photoelectrocatalysis [J].
Siripala, W ;
Ivanovskaya, A ;
Jaramillo, TF ;
Baeck, SH ;
McFarland, EW .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2003, 77 (03) :229-237
[25]   Solar hydrogen production with nanostructured metal oxides [J].
van de Krol, Roe ;
Liang, Yongqi ;
Schoonman, Joop .
JOURNAL OF MATERIALS CHEMISTRY, 2008, 18 (20) :2311-2320
[26]   Improved Charge Separation in WO3/CuWO4 Composite Photoanodes for Photoelectrochemical Water Oxidation [J].
Wang, Danping ;
Bassi, Prince Saurabh ;
Qi, Huan ;
Zhao, Xin ;
Gurudayal ;
Wong, Lydia Helena ;
Xu, Rong ;
Sritharan, Thirumany ;
Chen, Zhong .
MATERIALS, 2016, 9 (05)
[27]   Silicon nanowire array/Cu2O crystalline core-shell nanosystem for solar-driven photocatalytic water splitting [J].
Xiong, Zuzhou ;
Zheng, Maojun ;
Liu, Sida ;
Ma, Li ;
Shen, Wenzhong .
NANOTECHNOLOGY, 2013, 24 (26)
[28]   Engineering a Cu2O/NiO/Cu2MoS4 hybrid photocathode for H2 generation in water [J].
Yang, Chen ;
Tran, Phong D. ;
Boix, Pablo P. ;
Bassi, Prince S. ;
Yantara, Natalia ;
Wong, Lydia H. ;
Barber, James .
NANOSCALE, 2014, 6 (12) :6506-6510
[29]   Cu2O/CuO Bilayered Composite as a High-Efficiency Photocathode for Photoelectrochemical Hydrogen Evolution Reaction [J].
Yang, Yang ;
Xu, Di ;
Wu, Qingyong ;
Diao, Peng .
SCIENTIFIC REPORTS, 2016, 6
[30]   Carbon-Layer-Protected Cuprous Oxide Nanowire Arrays for Efficient Water Reduction [J].
Zhang, Zhonghai ;
Dua, Rubal ;
Zhang, Lianbin ;
Zhu, Haibo ;
Zhang, Hongnan ;
Wang, Peng .
ACS NANO, 2013, 7 (02) :1709-1717