Autocorrelation kernel functions for support vector machines

被引:0
作者
Kong, Rui [1 ]
Zhang, Bing [1 ]
机构
[1] Jinan Univ, Dept Comp Sci, Zhuhai Coll, Guangzhou 519070, Guangdong, Peoples R China
来源
ICNC 2007: THIRD INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION, VOL 1, PROCEEDINGS | 2007年
关键词
autocorrelation kernel; support vector machines; kernel function; kernel-based learning;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Kernel functions (kernel) are key part and the hard issue of Support Vector Machines. We research the relation of kernel functions and nonlinear mappings and mapped spaces. A new kind of admissible Support Vector Machines kernel is presented. It is autocorrelation kernel. The theory proofs certify that autocorrelation functions are admissible Support Vector Machines kernel. Several experiments also showed the validity of the autocorrelation kernel in classification and regression.
引用
收藏
页码:512 / +
页数:2
相关论文
共 8 条
[1]   A tutorial on Support Vector Machines for pattern recognition [J].
Burges, CJC .
DATA MINING AND KNOWLEDGE DISCOVERY, 1998, 2 (02) :121-167
[2]  
Cristianini N, 2004, INTRO SUPPORT VECTOR
[3]   An introduction to kernel-based learning algorithms [J].
Müller, KR ;
Mika, S ;
Rätsch, G ;
Tsuda, K ;
Schölkopf, B .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2001, 12 (02) :181-201
[4]  
ORFANIDIS SJ, 1999, INTRO SIGNAL PROCESS
[5]   Input space versus feature space in kernel-based methods [J].
Schölkopf, B ;
Mika, S ;
Burges, CJC ;
Knirsch, P ;
Müller, KR ;
Rätsch, G ;
Smola, AJ .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 1999, 10 (05) :1000-1017
[6]  
Smola AJ, 1998, Learning with kernels, V4
[7]  
VAPNIK V.N., 1995, NATURE STAT LEARNING
[8]  
ZHANG L, 2003, IEEE T SYSTEMS MAN B