Support Vector Machines for Quasar Selection

被引:4
作者
Peng, Nanbo [1 ]
Zhang, Yanxia [1 ]
Zhao, Yongheng [1 ]
机构
[1] Chinese Acad Sci, Natl Astron Observ, Key Lab Opt Astron, Beijing 100012, Peoples R China
来源
SOFTWARE AND CYBERINFRASTRUCTURE FOR ASTRONOMY | 2010年 / 7740卷
关键词
Support Vector Machines (SVMs); classification; quasar candidates; photometricredshifts; catalog; DIGITAL-SKY-SURVEY; EFFICIENT PHOTOMETRIC SELECTION; SYNOPTIC SURVEY TELESCOPE; DATA RELEASE; CATALOG; OBJECTS; CLASSIFICATION; REDSHIFT;
D O I
10.1117/12.856374
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We introduce an automated method called Support Vector Machines (SVMs) for quasar selection in order to compile an input catalogue for the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) and improve the efficiency of its 4000 fibers. The data are adopted from the Sloan Digital Sky Survey (SDSS) Data Release Seven (DR7) which is the latest world release now. We carefully study the discrimination of quasars from stars by finding the hyperplane in high-dimensional space of colors with different combinations of model parameters in SVMs and give a clear way to find the optimal combination (C-+ = 2, C+- = 2, kernel = RBF, gamma = 3.2). Furthermore, we investigate the performances of SVMs for the sake of predicting the photometric redshifts of quasar candidates and get optimal model parameters of (w = 0.001, C-+ = 1, C+- = 2, kernel = RBF, gamma = 7.5) for SVMs. Finally, the experimental results show that the precision and the recall of SVMs for separating quasars from stars both can be over 95%. Using the optimal model parameters, we estimate the photometric redshifts of 39353 identified quasars, and find that 72.99% of them are consistent with the spectroscopic redshifts within vertical bar Delta z vertical bar < 0.2. This approach is effective and applicable for our problem.
引用
收藏
页数:11
相关论文
共 24 条
[11]   The large bright quasar survey. VII. The LBQS and first surveys [J].
Hewett, PC ;
Foltz, CB ;
Chaffee, FH .
ASTRONOMICAL JOURNAL, 2001, 122 (02) :518-535
[12]   Pan-STARRS - A large synoptic survey telescope array [J].
Kaiser, N ;
Aussel, H ;
Burke, B ;
Boesgaard, H ;
Chambers, K ;
Chun, M ;
Heasley, J ;
Hodapp, K ;
Hunt, B ;
Jedicke, R ;
Jewitt, D ;
Kudritzki, R ;
Luppino, G ;
Maberry, M ;
Magnier, E ;
Monet, D ;
Onaka, P ;
Pickles, A ;
Rhoads, PH ;
Simon, T ;
Szalay, A ;
Szapudi, I ;
Tholen, D ;
Tonry, J ;
Waterson, M ;
Wick, A .
SURVEY AND OTHER TELESCOPE TECHNOLOGIES AND DISCOVERIES, 2002, 4836 :154-164
[13]  
MORIK K, 1998, 16 INT C MACH LEARN
[14]   EFFICIENT PHOTOMETRIC SELECTION OF QUASARS FROM THE SLOAN DIGITAL SKY SURVEY. II. ∼1,000,000 QUASARS FROM DATA RELEASE 6 [J].
Richards, Gordon T. ;
Myers, Adam D. ;
Gray, Alexander G. ;
Riegel, Ryan N. ;
Nichol, Robert C. ;
Brunner, Robert J. ;
Szalay, Alexander S. ;
Schneider, Donald P. ;
Anderson, Scott F. .
ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2009, 180 (01) :67-83
[15]   Spectroscopic target selection in the Sloan Digital Sky Survey: The quasar sample [J].
Richards, GT ;
Fan, XH ;
Newberg, HJ ;
Strauss, MA ;
Berk, DEV ;
Schneider, DP ;
Yanny, B ;
Boucher, A ;
Burles, S ;
Frieman, JA ;
Gunn, JE ;
Hall, PB ;
Ivezic, Z ;
Kent, S ;
Loveday, J ;
Lupton, RH ;
Rockosi, CM ;
Schlegel, DJ ;
Stoughton, C ;
SubbaRao, M ;
York, DG .
ASTRONOMICAL JOURNAL, 2002, 123 (06) :2945-2975
[16]   Efficient photometric selection of quasars from the Sloan Digital Sky Survey:: 100,000 z &lt; 3 quasars from Data Release One [J].
Richards, GT ;
Nichol, RC ;
Gray, AG ;
Brunner, RJ ;
Lupton, RH ;
Berk, DEV ;
Chong, SS ;
Weinstein, MA ;
Schneider, DP ;
Anderson, SF ;
Munn, JA ;
Harris, HC ;
Strauss, MA ;
Fan, XH ;
Gunn, JE ;
Ivezic, Z ;
York, DG ;
Brinkmann, J ;
Moore, AW .
ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2004, 155 (02) :257-269
[17]   Spectroscopic CCD surveys for quasars at large redshift. V. The Palomar Scan Grism Survey catalog [J].
Schneider, DP ;
Schmidt, M ;
Gunn, JE .
ASTRONOMICAL JOURNAL, 1999, 117 (01) :40-55
[18]   Large synoptic survey telescope: Overview [J].
Tyson, JA .
SURVEY AND OTHER TELESCOPE TECHNOLOGIES AND DISCOVERIES, 2002, 4836 :10-20
[19]  
Vapnik V., 1995, The nature of statistical learning theory
[20]  
Vapnik V., 1998, Statistical Learning Theory, P5