Over-Complete Source-Mapping Aided AMR-WB Using Iteratively Detected Differential Space-Time Spreading

被引:0
作者
Othman, N. S. [1 ]
El-Hajjar, M. [1 ]
Pham, A. Q. [1 ]
Alamri, O. [1 ]
Ng, S. X. [1 ]
Hanzo, L. [1 ]
机构
[1] Univ Southampton, Sch ECS, Southampton SO17 1BJ, Hants, England
来源
2010 IEEE 71ST VEHICULAR TECHNOLOGY CONFERENCE | 2010年
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The achievable performance of a jointly optimised iterative source and channel decoding (ISCD) arrangement invoking the Adaptive MultiRate Wideband (AMR-WB) speech codec is characterized, which exploits the intentional redundancy imposed by the proposed Over-Complete source-Mapping (OCM) scheme. The resultant OCM-aided AMR-WB bitstream is protected by a Recursive Systematic Convolutional (RSC) code and mapped to a Differential Space-Time Spreading (DSTS) arrangement using Sphere Packing (SP) modulation for transmission over narrowband temporally correlated Rayleigh fading channels. The effect of appropriately apportioning the total amount of redundancy between the source and channel codecs on the attainable system performance is demonstrated, while keeping the overall coding rate constant. The decoding convergence of the proposed scheme is studied with the aid of Extrinsic Information Transfer (EXIT) charts. Explicitly, our experimental results show that the specific scheme using a 2/3-rate channel encoder and a 3/4-rate OCM scheme exhibits an E-b/N-0 gain of 0.7 dB at the SegSNR degradation point of 1 dB, when compared to the system that assigns all the redundancy to the OCM scheme. By contrast, the scheme using a 3/4-rate channel encoder and a 8/9-rate OCM results in an E-b/N-0 gain of 1.0 dB.
引用
收藏
页数:5
相关论文
共 13 条
[11]   A MATHEMATICAL THEORY OF COMMUNICATION [J].
SHANNON, CE .
BELL SYSTEM TECHNICAL JOURNAL, 1948, 27 (03) :379-423
[12]   A MATHEMATICAL THEORY OF COMMUNICATION [J].
SHANNON, CE .
BELL SYSTEM TECHNICAL JOURNAL, 1948, 27 (04) :623-656
[13]   Convergence behavior of iteratively decoded parallel concatenated codes [J].
ten Brink, S .
IEEE TRANSACTIONS ON COMMUNICATIONS, 2001, 49 (10) :1727-1737