Continuous symmetrized Sobolev inner products of order N (I)

被引:2
作者
Bueno, MI
Marcellán, F
Sánchez-Ruiz, J
机构
[1] Univ Carlos III Madrid, Dept Matemat, Madrid 28911, Spain
[2] Univ Granada, Inst Carlos I Fis Teor & Computac, E-18071 Granada, Spain
关键词
Sobolev inner product; orthogonal polynomials; symmetrization process;
D O I
10.1016/j.jmaa.2004.11.052
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given a symmetrized Sobolev inner product of order N, the corresponding sequence of monic orthogonal polynomials {Q(n)} satisfies that Q(2n) (x) = Pn (x(2)), Q(2n+1) (x) = xR(n) (x(2)) for certain sequences of monic polynomials {P-n} and {R-n}. In this paper, we deduce the integral representation of the inner products such that {P-n} and {R-n} are the corresponding sequences of orthogonal polynomials. Moreover, we state a relation between both inner products which extends the classical result for symmetric linear functionals. (c) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:83 / 96
页数:14
相关论文
共 10 条
[1]  
Arvesu J., 2002, COMM ANAL THEORY CON, V10, P13
[2]  
Blankenagel J., 1971, THESIS U KOLN
[3]  
Bueno M.I., 2003, INT MATH J, V3, P319
[4]  
BUENO MI, POLYNOMIAL PERTURBAT
[5]  
BUENO MI, CONTINUOUS SYMMETRIZ
[6]   On asymptotic properties of Freud-Sobolev orthogonal polynomials [J].
Cachafeiro, A ;
Marcellán, F ;
Moreno-Balcázar, JJ .
JOURNAL OF APPROXIMATION THEORY, 2003, 125 (01) :26-41
[7]  
Chihara T, 1978, INTRO ORTHOGONAL POL
[8]  
Faa di Bruno CF, 1855, Q J MATH, V1, P359
[9]   General Sobolev orthogonal polynomials [J].
Marcellan, F ;
Perez, TE ;
Pinar, MA ;
Ronveaux, A .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1996, 200 (03) :614-634
[10]   THE FORMULA OF DIBRUNO,FAA [J].
ROMAN, S .
AMERICAN MATHEMATICAL MONTHLY, 1980, 87 (10) :805-809