Source Hypothesis Transfer for Zero-Shot Domain Adaptation

被引:1
|
作者
Sakai, Tomoya [1 ]
机构
[1] NEC Corp Ltd, Tokyo, Japan
来源
MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES | 2021年 / 12975卷
关键词
Hypothesis transfer learning; Zero-shot domain adaptation; Unseen domains; Domain adaptation;
D O I
10.1007/978-3-030-86486-6_35
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Making predictions in target unseen domains without training samples is frequent in real-world applications, such as new products' sales predictions. Zero-shot domain adaptation (ZSDA) has been studied to achieve this important but difficult task. An approach to ZSDA is to use multiple source domain data and domain attributes. Several recent domain adaptation studies have mentioned that source domain data are not often available due to privacy, technical, and contractual issues in practice. To address these issues, hypothesis transfer learning (HTL) has been gaining attention since it does not require access to source domain data. It has shown its effectiveness in supervised/unsupervised domain adaptation; however current HTL methods cannot be readily applied to ZSDA because we have no training data (even unlabeled data) for target domains. To solve this problem, we propose an HTL-based ZSDA method that connects multiple source hypotheses by domain attributes. Through theoretical analysis, we derive the convergence rate of the estimation error of our proposed method. Finally, we numerically demonstrate the effectiveness of our proposed HTL-based ZSDA method.
引用
收藏
页码:570 / 586
页数:17
相关论文
共 50 条
  • [1] Domain Shift Preservation for Zero-Shot Domain Adaptation
    Wang, Jinghua
    Cheng, Ming-Ming
    Jiang, Jianmin
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 5505 - 5517
  • [2] Zero-Shot Deep Domain Adaptation
    Peng, Kuan-Chuan
    Wu, Ziyan
    Ernst, Jan
    COMPUTER VISION - ECCV 2018, PT XI, 2018, 11215 : 793 - 810
  • [3] Learning Across Tasks for Zero-Shot Domain Adaptation From a Single Source Domain
    Wang, Jinghua
    Jiang, Jianmin
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (10) : 6264 - 6279
  • [4] Zero-shot Domain Adaptation Based on Attribute Information
    Ishii, Masato
    Takenouchi, Takashi
    Sugiyama, Masashi
    ASIAN CONFERENCE ON MACHINE LEARNING, VOL 101, 2019, 101 : 473 - 488
  • [5] Zero-shot domain adaptation with enhanced consistency for semantic segmentation
    Yang, Jiming
    Da, Feipeng
    Hong, Ru
    Cai, Zeyu
    Gai, Shaoyan
    COMPUTERS & ELECTRICAL ENGINEERING, 2025, 123
  • [6] Zero-Shot Deep Domain Adaptation With Common Representation Learning
    Kutbi, Mohammed
    Peng, Kuan-Chuan
    Wu, Ziyan
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (07) : 3909 - 3924
  • [7] Fine-Grained Representation Alignment for Zero-Shot Domain Adaptation
    Liu, Yabo
    Wang, Jinghua
    Zhong, Shenghua
    Ma, Lianyang
    Xu, Yong
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 6285 - 6296
  • [8] Dynamic Momentum Adaptation for Zero-Shot Cross-Domain Crowd Counting
    Wu, Qiangqiang
    Wan, Jia
    Chan, Antoni B.
    PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2021, 2021, : 658 - 666
  • [9] NucNormZSL: nuclear norm-based domain adaptation in zero-shot learning
    Singh, Upendra Pratap
    Singh, Krishna Pratap
    Thakur, Manoj
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (03) : 2353 - 2374
  • [10] Feature Generation Approach with Indirect Domain Adaptation for Transductive Zero-shot Learning
    Huang S.
    Yang W.-L.
    Zhang Y.
    Zhang X.-H.
    Yang D.
    Ruan Jian Xue Bao/Journal of Software, 2022, 33 (11): : 4268 - 4284