Predictor-Corrector Policy Optimization

被引:0
|
作者
Cheng, Ching-An [1 ,2 ]
Yan, Xinyan [1 ]
Ratliff, Nathan [2 ]
Boots, Byron [1 ,2 ]
机构
[1] Georgia Tech, Atlanta, GA 30322 USA
[2] NVIDIA, Santa Clara, CA 95051 USA
基金
美国国家科学基金会;
关键词
SUBGRADIENT METHODS; ALGORITHMS;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a predictor-corrector framework, called PICCOLO, that can transform a first-order model-free reinforcement or imitation learning algorithm into a new hybrid method that leverages predictive models to accelerate policy learning. The new "PICCOLOed" algorithm optimizes a policy by recursively repeating two steps: In the Prediction Step, the learner uses a model to predict the unseen future gradient and then applies the predicted estimate to update the policy; in the Correction Step, the learner runs the updated policy in the environment, receives the true gradient, and then corrects the policy using the gradient error. Unlike previous algorithms, PICCOLO corrects for the mistakes of using imperfect predicted gradients and hence does not suffer from model bias. The development of PICCOLO is made possible by a novel reduction from predictable online learning to adversarial online learning, which provides a systematic way to modify existing first-order algorithms to achieve the optimal regret with respect to predictable information. We show, in both theory and simulation, that the convergence rate of several first-order model-free algorithms can be improved by PICCOLO.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Predictor-Corrector Guidance Based on Optimization
    Han, Jingzhuang
    Yang, Lingyu
    Zhang, Zenghui
    Shen, Gongzhang
    2011 INTERNATIONAL CONFERENCE ON ELECTRONICS, COMMUNICATIONS AND CONTROL (ICECC), 2011, : 2757 - 2761
  • [2] Improved Predictor-Corrector Algorithm
    Pazira, Hassan
    COMPUTATIONAL INTELLIGENCE METHODS FOR BIOINFORMATICS AND BIOSTATISTICS, CIBB 2018, 2020, 11925 : 99 - 106
  • [3] AN EFFICIENT PREDICTOR-CORRECTOR ALGORITHM
    WESTREICH, D
    COMPUTER JOURNAL, 1980, 23 (02): : 186 - 186
  • [4] Predictor-corrector image interpolation
    Zhong, Baojiang
    Ma, Kai-Kuang
    Lu, Zhifang
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2019, 61 : 50 - 60
  • [5] EFFICIENCY OF PREDICTOR-CORRECTOR PROCEDURES
    HULL, TE
    CREEMER, AL
    JOURNAL OF THE ACM, 1963, 10 (03) : 291 - &
  • [6] Parallel predictor-corrector methods
    vanderHouwen, PJ
    Sommeijer, BP
    deSwart, JJB
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1996, 66 (1-2) : 53 - 71
  • [7] Validated predictor-corrector methods
    Rihm, R
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2000, 80 : S825 - S826
  • [8] STABILITY OF PREDICTOR-CORRECTOR METHODS
    HALL, G
    COMPUTER JOURNAL, 1967, 9 (04): : 410 - &
  • [9] On interval predictor-corrector methods
    Andrzej Marciniak
    Malgorzata A. Jankowska
    Tomasz Hoffmann
    Numerical Algorithms, 2017, 75 : 777 - 808
  • [10] On interval predictor-corrector methods
    Marciniak, Andrzej
    Jankowska, Malgorzata A.
    Hoffmann, Tomasz
    NUMERICAL ALGORITHMS, 2017, 75 (03) : 777 - 808