Classification of electrocardiogram signals with support vector machines and genetic algorithms using power spectral features

被引:111
作者
Khazaee, A. [1 ]
Ebrahimzadeh, A. [1 ]
机构
[1] Babol Univ Technol, Fac Elect & Comp Engn, Babol Sar, Iran
关键词
ECG beat classification; SVM; Genetic algorithm; Parameter optimization; Non-parametric PSD estimation methods; Multitaper method; WAVELET TRANSFORM; NEURAL-NETWORKS; RECOGNITION;
D O I
10.1016/j.bspc.2010.07.006
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
This paper proposes a new power spectral-based hybrid genetic algorithm-support vector machines (SVMGA) technique to classify five types of electrocardiogram (ECG) beats, namely normal beats and four manifestations of heart arrhythmia. This method employs three modules: a feature extraction module, a classification module and an optimization module. Feature extraction module extracts electrocardiogram's spectral and three timing interval features. Non-parametric power spectral density (PSD) estimation methods are used to extract spectral features. Support vector machine (SVM) is employed as a classifier to recognize the ECG beats. We investigate and compare two such classification approaches. First they are specified experimentally by the trial and error method. In the second technique the approach optimizes the relevant parameters through an intelligent algorithm. These parameters are: Gaussian radial basis function (GRBF) kernel parameter a and C penalty parameter of SVM classifier. Then their performances in classification of ECG signals are evaluated for eight files obtained from the MIT-BIH arrhythmia database. Classification accuracy of the SVMGA approach proves superior to that of the SVM which has constant and manually extracted parameter. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:252 / 263
页数:12
相关论文
共 31 条
[1]   Automatic identification of cardiac health using modeling techniques: A comparative study [J].
Acharya, U. Rajendra ;
Sankaranarayanan, Meena ;
Nayak, Jagadish ;
Xiang, Chen ;
Tamura, Toshiyo .
INFORMATION SCIENCES, 2008, 178 (23) :4571-4582
[2]   ECG signal analysis through hidden Markov models [J].
Andreao, Rodrigo V. ;
Dorizzi, Bernadette ;
Boudy, Jerome .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2006, 53 (08) :1541-1549
[3]  
[Anonymous], 2008, ADV DIGITAL SIGNAL P
[4]  
[Anonymous], 2006, ARTECH HOUSE BOSTON
[5]  
Bandyopadhyay Sanghamitra, 2007, P1, DOI 10.1007/3-540-49607-6_1
[6]   A tutorial on Support Vector Machines for pattern recognition [J].
Burges, CJC .
DATA MINING AND KNOWLEDGE DISCOVERY, 1998, 2 (02) :121-167
[7]   SUPPORT-VECTOR NETWORKS [J].
CORTES, C ;
VAPNIK, V .
MACHINE LEARNING, 1995, 20 (03) :273-297
[8]   Automatic classification of heartbeats using ECG morphology and heartbeat interval features [J].
de Chazal, P ;
O'Dwyer, M ;
Reilly, RB .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2004, 51 (07) :1196-1206
[9]   A patient-adapting heartbeat classifier using ECG morphology and heartbeat interval features [J].
de Chazal, Philip ;
Reilly, Richard B. .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2006, 53 (12) :2535-2543
[10]   Detection of premature ventricular contractions using MLP neural networks: A comparative study [J].
Ebrahimzadeh, Ataollah ;
Khazaee, Ali .
MEASUREMENT, 2010, 43 (01) :103-112