Compressible primitive equations: formal derivation and stability of weak solutions

被引:22
作者
Ersoy, Mehmet [1 ,3 ]
Ngom, Timack [1 ,2 ]
Sy, Mamadou [2 ]
机构
[1] Univ Savoie, CNRS, LAMA, UMR 5127, F-73376 Le Bourget Du Lac, France
[2] Univ Gaston Berger St Louis, UFR SAT, LANI, St Louis, Senegal
[3] BCAM, Derio 48160, Basque Country, Spain
关键词
NAVIER-STOKES EQUATIONS; ATMOSPHERE;
D O I
10.1088/0951-7715/24/1/004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a formal derivation of compressible primitive equations for atmosphere modelling. They are obtained from the 3D compressible Navier-Stokes equations with an anisotropic viscous stress tensor depending on the density. Then, we study the stability of weak solutions to this problem by introducing an intermediate model obtained by a suitable change of variables. This intermediate model is more practical and it is simpler to achieve the main result.
引用
收藏
页码:79 / 96
页数:18
相关论文
共 13 条
[1]  
[Anonymous], 2004, SOME MATH PROBLEMS G
[2]   Some diffusive capillary models of Korteweg type [J].
Bresch, D ;
Desjardins, B .
COMPTES RENDUS MECANIQUE, 2004, 332 (11) :881-886
[3]   Global Weak Solutions to a Generic Two-Fluid Model [J].
Bresch, D. ;
Desjardins, B. ;
Ghidaglia, J. -M. ;
Grenier, E. .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2010, 196 (02) :599-629
[4]   On compressible Navier-Stokes equations with density dependent viscosities in bounded domains [J].
Bresch, Didier ;
Desjardins, Benoit ;
Gerard-Varet, David .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2007, 87 (02) :227-235
[5]  
Bresch D, 2009, HBK DIFF EQUAT EVOL, V5, P1, DOI 10.1016/S1874-5717(08)00208-9
[6]  
BUNTEBARTH G, 1981, ABHUNDLUNGEN BRAUNSC, V32, P95
[7]  
ERSOY M, 2010, EXISTENCE GLOBAL WEA
[8]   Existence of a global solution to one model problem of atmosphere dynamics [J].
Gatapov, BV ;
Kazhikhov, AV .
SIBERIAN MATHEMATICAL JOURNAL, 2005, 46 (05) :805-812
[9]  
Kochin N.E., 1936, T GLAVN GEOFIZ OBS, V4, P21
[10]   NEW FORMULATIONS OF THE PRIMITIVE EQUATIONS OF ATMOSPHERE AND APPLICATIONS [J].
LIONS, JL ;
TEMAM, R ;
WANG, SH .
NONLINEARITY, 1992, 5 (02) :237-288