Optimization of silver-containing bioglass nanoparticles envisaging biomedical applications

被引:39
作者
Vale, A. C. [1 ,2 ]
Pereira, P. R. [1 ,2 ]
Barbosa, A. M. [2 ,3 ]
Torrado, E. [2 ,3 ]
Alves, N. M. [1 ,2 ]
机构
[1] Univ Minho, Res Inst Biomat Biodegradables & Biomimet I3Bs, Headquarters European Inst Excellence Tissue Engn, Res Grp 3Bs, AvePark, P-4805017 Barco, Guimaraes, Portugal
[2] ICVS 3Bs PT Associate Lab, Guimaraes, Portugal
[3] Univ Minho, Life & Hlth Sci Res Inst ICVS, Sch Hlth Sci, Braga, Portugal
来源
MATERIALS SCIENCE AND ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS | 2019年 / 94卷
关键词
Nanoparticles; Bioglass (R) (BG); Silver (Ag); Antibacterial activity; BIOACTIVE GLASS NANOPARTICLES; ANTIBACTERIAL; COPPER; IONS;
D O I
10.1016/j.msec.2018.09.027
中图分类号
TB3 [工程材料学]; R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
Bioglass nanoparticles (BGs) are of outmost importance in the biomedical field, because their unique characteristics, namely osteoconductivity and osteoinductivity, and also in certain conditions, angiogenic and bactericidal properties. In this work, novel bioglass nanoparticles containing silver (AgBGs) were synthesized by a sol-gel method, adopting different thermal treatments to obtain new nanoparticles with bioactive and anti-bacterial features. This is the first systematic study of the effect of the thermal treatment on the properties of AgBGs. The effect of the studied thermal treatments on the properties of synthesized nanoparticles was analyzed by several characterization techniques: FT-IR, XRD, S-TEM, SEM-EDS and Zeta potential. FT-IR allowed the identification of the characteristic peaks of the nanoparticles and XRD revealed the presence of the characteristic peaks of an apatite-like phase. By S-TEM analysis it was found that the produced nanoparticles are dense and have a diameter < 200 nm. The SEM micrographs showed their surface morphology and Zeta potential measurements were performed to study their suspension stability. Additionally, in vitro bioactivity tests confirmed their bioactive potential and the microbiological tests evidenced their bactericidal effect. These promising AgBGs could be incorporated either in 2D or 3D structures for several biomedical applications, namely in the orthopedic and dental fields.
引用
收藏
页码:161 / 168
页数:8
相关论文
共 51 条
[1]   Designing biomaterials based on biomineralization of bone [J].
Alves, N. M. ;
Leonor, I. B. ;
Azevedo, H. S. ;
Reis, R. L. ;
Mano, J. F. .
JOURNAL OF MATERIALS CHEMISTRY, 2010, 20 (15) :2911-2921
[2]   Broad-spectrum bactericidal activity of Ag2O-doped bioactive glass [J].
Bellantone, M ;
Williams, HD ;
Hench, LL .
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 2002, 46 (06) :1940-1945
[3]  
Bellantone M, 2000, J BIOMED MATER RES, V51, P484, DOI 10.1002/1097-4636(20000905)51:3<484::AID-JBM24>3.0.CO
[4]  
2-4
[5]  
Bellantone M, 2001, J BIOCERAM KEY ENG M, V192-195, P597
[6]   Development and characterisation of silver-doped bioactive glasscoated sutures for tissue engineering and wound healing applications [J].
Blaker, JJ ;
Nazhat, SN ;
Boccaccini, AR .
BIOMATERIALS, 2004, 25 (7-8) :1319-1329
[7]   Polymer/bioactive glass nanocomposites for biomedical applications: A review [J].
Boccaccini, Aldo R. ;
Erol, Melek ;
Stark, Wendelin J. ;
Mohn, Dirk ;
Hong, Zhongkui ;
Mano, Joao F. .
COMPOSITES SCIENCE AND TECHNOLOGY, 2010, 70 (13) :1764-1776
[8]   Antibacterial and bioactive silver-containing Na2O • CaO • 2SiO2 glass prepared by sol-gel method [J].
Catauro, M ;
Raucci, MG ;
De Gaetano, F ;
Marotta, A .
JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE, 2004, 15 (07) :831-837
[9]   Antibacterial activity of silver-doped hydroxyapatite nanoparticles against gram-positive and gram-negative bacteria [J].
Ciobanu, Carmen Steluta ;
Iconaru, Simona Liliana ;
Le Coustumer, Phillippe ;
Constantin, Liliana Violeta ;
Predoi, Daniela .
NANOSCALE RESEARCH LETTERS, 2012, 7
[10]  
Ciraldo F. E., 2018, DENT MATER, V11, P692, DOI DOI 10.3390/MA11050692