Multi-sensor Data Fusion Method Based on ARIMA-LightGBM for AGV Positioning

被引:2
作者
Che, HongLei [1 ]
机构
[1] China Acad Safety Sci & Technol, Beijing Key Lab Metro Fire & Passenger Transporta, Beijing, Peoples R China
来源
2021 5TH INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION SCIENCES (ICRAS 2021) | 2021年
基金
中国国家自然科学基金;
关键词
Multi-sensor Data Fusion; ARIMA time series; LightGBM; positioning error; AGV Positioning;
D O I
10.1109/ICRAS52289.2021.9476452
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes a novel AGV multi-sensor data fusion method. First, for the problem of multi-sensor error changing with time, use ARIMA time series to process the positioning error data, and establish a time series model of each sensor error as a new feature input of the subsequent regression model. Then, the widely used machine learning regression model LightGBM is used to fuse the positioning data, train two LightGBM models for the coordinate data in two directions, and output the positioning results at the same time. Finally, through comparison experiments, the positioning accuracy can reach 6.5mm, which verifies the superiority of this method.
引用
收藏
页码:272 / 276
页数:5
相关论文
共 14 条
[1]  
Babu C. N., 2012, 2012 International Conference on Advances in Engineering, Science and Management (ICAESM), P256
[2]  
Guan Y., 2018, B SCI TECHNOLOGY, V4, P113
[3]  
Hou J., 2013, INT C INTELLIGENT CO
[4]  
Hu Q. H., 2016, J COMPUTER APPL, V33, P3219
[5]  
Jia Peng-tao, 2007, Application Research of Computers, V24, P15
[6]  
Kazerooni Maryam, 2013, 2013 IEEE 14th International Conference on Information Reuse & Integration (IRI), P712, DOI 10.1109/IRI.2013.6642539
[7]  
Ke GL, 2017, ADV NEUR IN, V30
[8]   Multisensor data fusion using Elman neural networks [J].
Kolanowski, Krzysztof ;
Swietlicka, Aleksandra ;
Kapela, Rafal ;
Pochmara, Janusz ;
Rybarczyk, Andrzej .
APPLIED MATHEMATICS AND COMPUTATION, 2018, 319 :236-244
[9]  
Lu S. L., 2013, MODERN SCI INSTRUMEN, V01, P67
[10]   Multirate multisensor data fusion for linear systems using Kalman filters and a neural network [J].
Safari, Sajjad ;
Shabani, Faridoon ;
Simon, Dan .
AEROSPACE SCIENCE AND TECHNOLOGY, 2014, 39 :465-471