Numerical Solution of the Direct Scattering Problem for the Nonlinear Schrodinger Equation

被引:0
作者
Fermo, Luisa [1 ]
van der Mee, Cornelis [1 ]
Seatzte, Sebastiano [1 ]
机构
[1] Univ Cagliari, Dept Math & Comp Sci, Viale Merello 92, I-09123 Cagliari, Italy
来源
2015 TYRRHENIAN INTERNATIONAL WORKSHOP ON DIGITAL COMMUNICATIONS (TIWDC) | 2015年
关键词
DISPERSIVE DIELECTRIC FIBERS; OPTICAL PULSES; TRANSMISSION;
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
We illustrate a numerical method to compute the scattering data for the Zhakarov-Shabat system associated to the initial value problem for the nonlinear Schrodinger equation. This numerical method which, to our best knowledge, is the first method proposed to compute all scattering data under general assumptions, is based on the version of the Inverse Scattering Transform method proposed by one of the authors.
引用
收藏
页码:5 / 8
页数:4
相关论文
共 50 条
[21]   The Inverse Scattering Transform for the Defocusing Nonlinear Schrodinger Equations with Nonzero Boundary Conditions [J].
Demontis, F. ;
Prinari, B. ;
van der Mee, C. ;
Vitale, F. .
STUDIES IN APPLIED MATHEMATICS, 2013, 131 (01) :1-40
[22]   Soliton dynamics in an extended nonlinear Schrodinger equation with a spatial counterpart of the stimulated Raman scattering [J].
Gromov, E. M. ;
Malomed, B. A. .
JOURNAL OF PLASMA PHYSICS, 2013, 79 :1057-1062
[23]   Dipole soliton solution for the homogeneous high-order nonlinear Schrodinger equation with cubic-quintic-septic non-Kerr terms [J].
Azzouzi, F. ;
Triki, H. ;
Grelu, Ph. .
APPLIED MATHEMATICAL MODELLING, 2015, 39 (3-4) :1300-1307
[24]   Soliton in an extended nonlinear Schrodinger equation with stimulated scattering on damping low-frequency waves and nonlinear dispersion [J].
Gromov, E. M. .
3RD INTERNATIONAL CONFERENCE ON MATHEMATICAL MODELING IN PHYSICAL SCIENCES (IC-MSQUARE 2014), 2015, 574
[25]   Solitary wave solutions for a higher order nonlinear Schrodinger equation [J].
Triki, Houria ;
Taha, Thiab R. .
MATHEMATICS AND COMPUTERS IN SIMULATION, 2012, 82 (07) :1333-1340
[26]   Damped solitons in an extended nonlinear Schrodinger equation with a spatial stimulated Raman scattering and decreasing dispersion [J].
Gromov, E. M. ;
Malomed, B. A. .
OPTICS COMMUNICATIONS, 2014, 320 :88-93
[27]   Nonlinear tunneling of solitons in a variable coefficients nonlinear Schrodinger equation with PT-symmetric Rosen-Morse potential [J].
Manikandan, K. ;
Sudharsan, J. B. ;
Senthilvelan, M. .
EUROPEAN PHYSICAL JOURNAL B, 2021, 94 (06)
[28]   Exact solutions of the generalized nonlinear Schrodinger equation with time- and space-modulated coefficients [J].
Zhang, Xiao-Fei ;
Wen, Lin ;
Luo, Xiao-Bing ;
Xie, Zheng-Wei .
PHYSICS LETTERS A, 2012, 376 (04) :465-468
[29]   Stability of solitary waves for the vector nonlinear Schrodinger equation in higher-order Sobolev spaces [J].
Nguyen, Nghiem V. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 409 (02) :946-962
[30]   Integrable discretization of nonlinear Schrodinger equation and its application with Fourier pseudo-spectral method [J].
Zhang, Y. ;
Hu, X. B. ;
Tam, H. W. .
NUMERICAL ALGORITHMS, 2015, 69 (04) :839-862