Numerical Solution of the Direct Scattering Problem for the Nonlinear Schrodinger Equation

被引:0
|
作者
Fermo, Luisa [1 ]
van der Mee, Cornelis [1 ]
Seatzte, Sebastiano [1 ]
机构
[1] Univ Cagliari, Dept Math & Comp Sci, Viale Merello 92, I-09123 Cagliari, Italy
来源
2015 TYRRHENIAN INTERNATIONAL WORKSHOP ON DIGITAL COMMUNICATIONS (TIWDC) | 2015年
关键词
DISPERSIVE DIELECTRIC FIBERS; OPTICAL PULSES; TRANSMISSION;
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
We illustrate a numerical method to compute the scattering data for the Zhakarov-Shabat system associated to the initial value problem for the nonlinear Schrodinger equation. This numerical method which, to our best knowledge, is the first method proposed to compute all scattering data under general assumptions, is based on the version of the Inverse Scattering Transform method proposed by one of the authors.
引用
收藏
页码:5 / 8
页数:4
相关论文
共 50 条
  • [1] Numerical modeling considerations for an applied nonlinear Schrodinger equation
    Pitts, Todd A.
    Laine, Mark R.
    Schwarz, Jens
    Rambo, Patrick K.
    Hautzenroeder, Brenna M.
    Karelitz, David B.
    APPLIED OPTICS, 2015, 54 (06) : 1426 - 1435
  • [2] The inverse scattering transform for the focusing nonlinear Schrodinger equation with asymmetric boundary conditions
    Demontis, F.
    Prinari, B.
    van der Mee, C.
    Vitale, F.
    JOURNAL OF MATHEMATICAL PHYSICS, 2014, 55 (10)
  • [3] Numerical methods and comparison for computing dark and bright solitons in the nonlinear Schrodinger equation
    Bao, Weizhu
    Tang, Qinglin
    Xu, Zhiguo
    JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 235 : 423 - 445
  • [4] Bright Soliton Solution of the Nonlinear Schrodinger Equation: Fourier Spectrum and Fundamental Characteristics
    Karjanto, Natanael
    MATHEMATICS, 2022, 10 (23)
  • [5] Exact Solutions to the Nonlinear Schrodinger Equation
    Aktosun, Tuncay
    Busse, Theresa
    Demontis, Francesco
    van der Mee, Cornelis
    TOPICS IN OPERATOR THEORY, VOL 2: SYSTEMS AND MATHEMATICAL PHYSICS, 2010, 203 : 1 - +
  • [6] General soliton solution to a nonlocal nonlinear Schrodinger equation with zero and nonzero boundary conditions
    Feng, Bao-Feng
    Luo, Xu-Dan
    Ablowitz, Mark J.
    Musslimani, Ziad H.
    NONLINEARITY, 2018, 31 (12) : 5385 - 5409
  • [7] Symmetries for exact solutions to the nonlinear Schrodinger equation
    Aktosun, Tuncay
    Busse, Theresa
    Demontis, Francesco
    van der Mee, Cornelis
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (02)
  • [8] N-Bright-Dark Soliton Solution to a Semi-Discrete Vector Nonlinear Schrodinger Equation
    Feng, Bao-Feng
    Ohta, Yasuhiro
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2017, 13
  • [9] Localized solutions of inhomogeneous saturable nonlinear Schrodinger equation
    da Rocha, Maurilho R.
    Avelar, Ardiley T.
    Cardoso, Wesley B.
    NONLINEAR DYNAMICS, 2023, 111 (05) : 4769 - 4777
  • [10] Nonintegrable spatial discrete nonlocal nonlinear schrodinger equation
    Ji, Jia-Liang
    Xu, Zong-Wei
    Zhu, Zuo-Nong
    CHAOS, 2019, 29 (10)