Deep Learning in Pancreatic Tissue: Identification of Anatomical Structures, Pancreatic Intraepithelial Neoplasia, and Ductal Adenocarcinoma

被引:25
作者
Kriegsmann, Mark [1 ]
Kriegsmann, Katharina [2 ]
Steinbuss, Georg [2 ]
Zgorzelski, Christiane [1 ]
Kraft, Anne [3 ]
Gaida, Matthias M. [3 ,4 ,5 ]
机构
[1] Heidelberg Univ, Inst Pathol, D-69120 Heidelberg, Germany
[2] Heidelberg Univ, Dept Hematol Oncol & Rheumatol, D-69120 Heidelberg, Germany
[3] Univ Med Ctr Mainz, JGU Mainz, Inst Pathol, D-55131 Mainz, Germany
[4] Univ Med Ctr Mainz, JGU Mainz, Res Ctr Immunotherapy, D-55131 Mainz, Germany
[5] Univ Med Ctr, JGU Mainz & TRON, Joint Unit Immunopathol, Inst Pathol,Translat Oncol,JGU Mainz, D-55131 Mainz, Germany
关键词
pancreatic cancer; convolutional neuronal networks; artificial intelligence; deep learning; HISTOPATHOLOGY; SYSTEM; CELLS;
D O I
10.3390/ijms22105385
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Identification of pancreatic ductal adenocarcinoma (PDAC) and precursor lesions in histological tissue slides can be challenging and elaborate, especially due to tumor heterogeneity. Thus, supportive tools for the identification of anatomical and pathological tissue structures are desired. Deep learning methods recently emerged, which classify histological structures into image categories with high accuracy. However, to date, only a limited number of classes and patients have been included in histopathological studies. In this study, scanned histopathological tissue slides from tissue microarrays of PDAC patients (n = 201, image patches n = 81.165) were extracted and assigned to a training, validation, and test set. With these patches, we implemented a convolutional neuronal network, established quality control measures and a method to interpret the model, and implemented a workflow for whole tissue slides. An optimized EfficientNet algorithm achieved high accuracies that allowed automatically localizing and quantifying tissue categories including pancreatic intraepithelial neoplasia and PDAC in whole tissue slides. SmoothGrad heatmaps allowed explaining image classification results. This is the first study that utilizes deep learning for automatic identification of different anatomical tissue structures and diseases on histopathological images of pancreatic tissue specimens. The proposed approach is a valuable tool to support routine diagnostic review and pancreatic cancer research.
引用
收藏
页数:14
相关论文
共 50 条
[31]   Communicator-Driven Data Preprocessing Improves Deep Transfer Learning of Histopathological Prediction of Pancreatic Ductal Adenocarcinoma [J].
Kronberg, Raphael M. ;
Haeberle, Lena ;
Pfaus, Melanie ;
Xu, Haifeng C. ;
Krings, Karina S. ;
Schlensog, Martin ;
Rau, Tilman ;
Pandyra, Aleksandra A. ;
Lang, Karl S. ;
Esposito, Irene ;
Lang, Philipp A. .
CANCERS, 2022, 14 (08)
[32]   An Automated Prognostic Model for Pancreatic Ductal Adenocarcinoma [J].
Vezakis, Ioannis ;
Vezakis, Antonios ;
Gourtsoyianni, Sofia ;
Koutoulidis, Vassilis ;
Polydorou, Andreas A. ;
Matsopoulos, George K. ;
Koutsouris, Dimitrios D. .
GENES, 2023, 14 (09)
[33]   Hedgehog acyltransferase as a target in pancreatic ductal adenocarcinoma [J].
Petrova, E. ;
Matevossian, A. ;
Resh, M. D. .
ONCOGENE, 2015, 34 (02) :263-268
[34]   IDRCNN: A Novel Deep Learning Network Model for Pancreatic Ductal Adenocarcinoma Detection on Computed Tomography [J].
Laxminarayanamma, K. ;
Krishnaiah, R. V. ;
Sammulal, P. .
INTERNATIONAL JOURNAL OF ELECTRICAL AND COMPUTER ENGINEERING SYSTEMS, 2024, 15 (01) :1-11
[35]   A Novel Deep Learning-based Pathomics Score for Prognostic Stratification in Pancreatic Ductal Adenocarcinoma [J].
Liu, Wenbin ;
Li, Jing ;
Yuan, Xiaohan ;
Chen, Chengwei ;
Shen, Yixuan ;
Zhang, Xinyue ;
Yu, Jieyu ;
Zhu, Mengmeng ;
Fang, Xu ;
Liu, Fang ;
Wang, Tiegong ;
Wang, Li ;
Fan, Jie ;
Jiang, Hui ;
Lu, Jianping ;
Shao, Chengwei ;
Bian, Yun .
PANCREAS, 2025, 54 (05) :e430-e441
[36]   Quantitative proteomics investigation of pancreatic intraepithelial neoplasia [J].
Pan, Sheng ;
Chen, Ru ;
Reimel, Beth Ann ;
Crispin, David A. ;
Mirzaei, Hamid ;
Cooke, Kelly ;
Coleman, Joshua F. ;
Lane, Zhaoli ;
Bronner, Mary P. ;
Goodlett, David R. ;
McIntosh, Martin W. ;
Traverso, William ;
Aebersold, Ruedi ;
Brentnall, Teresa A. .
ELECTROPHORESIS, 2009, 30 (07) :1132-1144
[37]   A protein-based machine learning approach to the identification of inflammatory subtypes in pancreatic ductal adenocarcinoma [J].
Herremans, Kelly M. ;
Underwood, Patrick W. ;
Riner, Andrea N. ;
Neal, Daniel W. ;
Tushoski-Aleman, Gerik W. ;
Forsmark, Christopher E. ;
Nassour, Ibrahim ;
Han, Song ;
Hughes, Steven J. .
PANCREATOLOGY, 2023, 23 (06) :615-621
[38]   Presence of pancreatic intraepithelial neoplasia-3 in a background of chronic pancreatitis in pancreatic cancer patients [J].
Hwang, In Kyeom ;
Kim, Haeryoung ;
Lee, Yoon Suk ;
Kim, Jaihwan ;
Cho, Jai Young ;
Yoon, Yoo-Seok ;
Han, Ho-Seong ;
Hwang, Jin-Hyeok .
CANCER SCIENCE, 2015, 106 (10) :1408-1413
[39]   Pancreatic resection for M1 pancreatic ductal adenocarcinoma [J].
Shrikhande, Shailesh V. ;
Kleff, Joerg ;
Reiser, Carolin ;
Weitz, Juergen ;
Hinz, Ulf ;
Esposito, Irene ;
Schmidt, Jan ;
Friess, Helmut ;
Buechler, Markus W. .
ANNALS OF SURGICAL ONCOLOGY, 2007, 14 (01) :118-127
[40]   Pancreatic Resection for M1 Pancreatic Ductal Adenocarcinoma [J].
Shailesh V. Shrikhande ;
Jörg Kleeff ;
Carolin Reiser ;
Jürgen Weitz ;
Ulf Hinz ;
Irene Esposito ;
Jan Schmidt ;
Helmut Friess ;
Markus W. Büchler .
Annals of Surgical Oncology, 2007, 14 :118-127