Deep Learning in Pancreatic Tissue: Identification of Anatomical Structures, Pancreatic Intraepithelial Neoplasia, and Ductal Adenocarcinoma

被引:21
|
作者
Kriegsmann, Mark [1 ]
Kriegsmann, Katharina [2 ]
Steinbuss, Georg [2 ]
Zgorzelski, Christiane [1 ]
Kraft, Anne [3 ]
Gaida, Matthias M. [3 ,4 ,5 ]
机构
[1] Heidelberg Univ, Inst Pathol, D-69120 Heidelberg, Germany
[2] Heidelberg Univ, Dept Hematol Oncol & Rheumatol, D-69120 Heidelberg, Germany
[3] Univ Med Ctr Mainz, JGU Mainz, Inst Pathol, D-55131 Mainz, Germany
[4] Univ Med Ctr Mainz, JGU Mainz, Res Ctr Immunotherapy, D-55131 Mainz, Germany
[5] Univ Med Ctr, JGU Mainz & TRON, Joint Unit Immunopathol, Inst Pathol,Translat Oncol,JGU Mainz, D-55131 Mainz, Germany
关键词
pancreatic cancer; convolutional neuronal networks; artificial intelligence; deep learning; HISTOPATHOLOGY; SYSTEM; CELLS;
D O I
10.3390/ijms22105385
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Identification of pancreatic ductal adenocarcinoma (PDAC) and precursor lesions in histological tissue slides can be challenging and elaborate, especially due to tumor heterogeneity. Thus, supportive tools for the identification of anatomical and pathological tissue structures are desired. Deep learning methods recently emerged, which classify histological structures into image categories with high accuracy. However, to date, only a limited number of classes and patients have been included in histopathological studies. In this study, scanned histopathological tissue slides from tissue microarrays of PDAC patients (n = 201, image patches n = 81.165) were extracted and assigned to a training, validation, and test set. With these patches, we implemented a convolutional neuronal network, established quality control measures and a method to interpret the model, and implemented a workflow for whole tissue slides. An optimized EfficientNet algorithm achieved high accuracies that allowed automatically localizing and quantifying tissue categories including pancreatic intraepithelial neoplasia and PDAC in whole tissue slides. SmoothGrad heatmaps allowed explaining image classification results. This is the first study that utilizes deep learning for automatic identification of different anatomical tissue structures and diseases on histopathological images of pancreatic tissue specimens. The proposed approach is a valuable tool to support routine diagnostic review and pancreatic cancer research.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Significance of E-cadherin Expression in Pancreatic Intraepithelial Neoplasia and Ductal Adenocarcinoma
    Choi, Joon H.
    Kim, Min J.
    Shin, Hyeong C.
    Gu, Mi J.
    Bae, Young K.
    LABORATORY INVESTIGATION, 2016, 96 : 439A - 439A
  • [22] Differential cell cycle and proliferation marker expression in ductal pancreatic adenocarcinoma and pancreatic intraepithelial neoplasia (PanIN)
    Karamitopoulou, Eva
    Zlobec, Inti
    Tornillo, Luigi
    Carafa, Vincenza
    Schaffner, Thomas
    Brunner, Thomas
    Borner, Markus
    Diamantis, Ioannis
    Zimmermann, Arthur
    Terracciano, Luigi
    PATHOLOGY, 2010, 42 (03) : 229 - 234
  • [23] Pathomorphological description of proliferation and apoptosis processes in pancreatic intraepithelial neoplasia in the pancreatic ductal adenocarcinoma and chronic pancreatitis
    Tumanskiy, V. A.
    Evseyev, A. V.
    Kovalenko, I. S.
    PATHOLOGIA, 2014, (02): : 70 - 73
  • [24] Differentially Expressed Genes Enrichment Analysis of Pancreatic Ductal Adenocarcinoma and Pancreatic Intraepithelial Neoplasia; an In Silico Study
    Mousavi, S.
    Bereimipour, A.
    Mohammadian, M.
    Farhadihosseinabadi, B.
    Jafari, A.
    AMERICAN JOURNAL OF CLINICAL PATHOLOGY, 2022, 158 (SUPP 1) : S146 - S147
  • [25] c-Fos/ERK promotes the progression from pancreatic intraepithelial neoplasia to pancreatic ductal adenocarcinoma
    You, Lei
    Ren, Xiaoxia
    Du, Yongxing
    Zhao, Wenjing
    Cui, Ming
    Chen, Ge
    Zhao, Yupei
    ONCOLOGY REPORTS, 2016, 36 (06) : 3413 - 3420
  • [26] Prevalence of pancreatic intraepithelial neoplasia (PanIN) in association with pancreatic adenocarcinoma
    Davis, WG
    Laszik, ZG
    LABORATORY INVESTIGATION, 2003, 83 (01) : 272A - 272A
  • [27] Prevalence of pancreatic intraepithelial neoplasia (PanIN) in association with pancreatic adenocarcinoma
    Davis, WG
    Laszik, ZG
    MODERN PATHOLOGY, 2003, 16 (01) : 272A - 272A
  • [28] Multicomponent analysis of the pancreatic adenocarcinoma progression model using a pancreatic intraepithelial neoplasia tissue microarray
    Maitra, A
    Adsay, NV
    Argani, P
    Iacobuzio-Donahue, C
    De Marzo, A
    Cameron, JL
    Yeo, CJ
    Hruban, RH
    MODERN PATHOLOGY, 2003, 16 (09) : 902 - 912
  • [29] Intraepithelial neoplasia in heterotopic pancreatic tissue
    Edelweiss, M. I.
    Pereira, M. P.
    Feier, F. H.
    Silva, V. N.
    Dedavid e Silva, T. L.
    Osvaldt, A. B.
    HISTOPATHOLOGY, 2010, 57 : 90 - 90
  • [30] Identification of Tissue miRNA Signatures for Pancreatic Ductal Adenocarcinoma
    Caputo, Carlo
    Falco, Michela
    Grimaldi, Anna
    Lombardi, Angela
    Miceli, Chiara Carmen
    Cocule, Mariateresa
    Montella, Marco
    Pompella, Luca
    Tirino, Giuseppe
    Campione, Severo
    Tammaro, Chiara
    Cossu, Antonio
    Fenu Pintori, Grazia
    Maioli, Margherita
    Coradduzza, Donatella
    Savarese, Giovanni
    Fico, Antonio
    Ottaiano, Alessandro
    Conzo, Giovanni
    Tathode, Madhura S.
    Ciardiello, Fortunato
    Caraglia, Michele
    De Vita, Ferdinando
    Misso, Gabriella
    CANCERS, 2024, 16 (04)