Deep Learning in Pancreatic Tissue: Identification of Anatomical Structures, Pancreatic Intraepithelial Neoplasia, and Ductal Adenocarcinoma

被引:25
作者
Kriegsmann, Mark [1 ]
Kriegsmann, Katharina [2 ]
Steinbuss, Georg [2 ]
Zgorzelski, Christiane [1 ]
Kraft, Anne [3 ]
Gaida, Matthias M. [3 ,4 ,5 ]
机构
[1] Heidelberg Univ, Inst Pathol, D-69120 Heidelberg, Germany
[2] Heidelberg Univ, Dept Hematol Oncol & Rheumatol, D-69120 Heidelberg, Germany
[3] Univ Med Ctr Mainz, JGU Mainz, Inst Pathol, D-55131 Mainz, Germany
[4] Univ Med Ctr Mainz, JGU Mainz, Res Ctr Immunotherapy, D-55131 Mainz, Germany
[5] Univ Med Ctr, JGU Mainz & TRON, Joint Unit Immunopathol, Inst Pathol,Translat Oncol,JGU Mainz, D-55131 Mainz, Germany
关键词
pancreatic cancer; convolutional neuronal networks; artificial intelligence; deep learning; HISTOPATHOLOGY; SYSTEM; CELLS;
D O I
10.3390/ijms22105385
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Identification of pancreatic ductal adenocarcinoma (PDAC) and precursor lesions in histological tissue slides can be challenging and elaborate, especially due to tumor heterogeneity. Thus, supportive tools for the identification of anatomical and pathological tissue structures are desired. Deep learning methods recently emerged, which classify histological structures into image categories with high accuracy. However, to date, only a limited number of classes and patients have been included in histopathological studies. In this study, scanned histopathological tissue slides from tissue microarrays of PDAC patients (n = 201, image patches n = 81.165) were extracted and assigned to a training, validation, and test set. With these patches, we implemented a convolutional neuronal network, established quality control measures and a method to interpret the model, and implemented a workflow for whole tissue slides. An optimized EfficientNet algorithm achieved high accuracies that allowed automatically localizing and quantifying tissue categories including pancreatic intraepithelial neoplasia and PDAC in whole tissue slides. SmoothGrad heatmaps allowed explaining image classification results. This is the first study that utilizes deep learning for automatic identification of different anatomical tissue structures and diseases on histopathological images of pancreatic tissue specimens. The proposed approach is a valuable tool to support routine diagnostic review and pancreatic cancer research.
引用
收藏
页数:14
相关论文
共 50 条
[1]   Progression to pancreatic ductal adenocarcinoma from pancreatic intraepithelial neoplasia: Results of a simulation model [J].
Peters, Mary Linton B. ;
Eckel, Andrew ;
Mueller, Peter P. ;
Tramontano, Angela C. ;
Weaver, Davis T. ;
Lietz, Anna ;
Hur, Chin ;
Kong, Chung Yin ;
Pandharipande, Pan, V .
PANCREATOLOGY, 2018, 18 (08) :928-934
[2]   Notch2 is required for progression of pancreatic intraepithelial neoplasia and development of pancreatic ductal adenocarcinoma [J].
Mazur, Pawel K. ;
Einwaechter, Henrik ;
Lee, Marcel ;
Sipos, Bence ;
Nakhai, Hassan ;
Rad, Roland ;
Zimber-Strobl, Ursula ;
Strobl, Lothar J. ;
Radtke, Freddy ;
Kloeppel, Guenter ;
Schmid, Roland M. ;
Siveke, Jens T. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (30) :13438-13443
[3]   Metabonomic changes from pancreatic intraepithelial neoplasia to pancreatic ductal adenocarcinoma in tissues from rats [J].
Wen, Shi ;
Li, Zhishui ;
Feng, Jianghua ;
Bai, Jianxi ;
Lin, Xianchao ;
Huang, Heguang .
CANCER SCIENCE, 2016, 107 (06) :836-845
[4]   Differential cell cycle and proliferation marker expression in ductal pancreatic adenocarcinoma and pancreatic intraepithelial neoplasia (PanIN) [J].
Karamitopoulou, Eva ;
Zlobec, Inti ;
Tornillo, Luigi ;
Carafa, Vincenza ;
Schaffner, Thomas ;
Brunner, Thomas ;
Borner, Markus ;
Diamantis, Ioannis ;
Zimmermann, Arthur ;
Terracciano, Luigi .
PATHOLOGY, 2010, 42 (03) :229-234
[5]   c-Fos/ERK promotes the progression from pancreatic intraepithelial neoplasia to pancreatic ductal adenocarcinoma [J].
You, Lei ;
Ren, Xiaoxia ;
Du, Yongxing ;
Zhao, Wenjing ;
Cui, Ming ;
Chen, Ge ;
Zhao, Yupei .
ONCOLOGY REPORTS, 2016, 36 (06) :3413-3420
[6]   Diagnosis of Pancreatic Ductal Adenocarcinoma Using Deep Learning [J].
Kavak, Fulya ;
Bora, Sebnem ;
Kantarci, Aylin ;
Ugur, Aybars ;
Cagaptay, Sumru ;
Gokcay, Deniz ;
Aysal, Anil ;
Pehlivanoglu, Burcin ;
Sagol, Ozgul .
SENSORS, 2024, 24 (21)
[7]   Deep Learning for Lymph Node Metastasis Detection in Pancreatic Ductal Adenocarcinoma [J].
Gaviria, David Duenas ;
Kupczyk, Patrick ;
Lee, Belinda ;
Gibbs, Peter ;
Ko, Hyun ;
Semaan, Alexander ;
Albarqouni, Shadi .
PROCEEDINGS OF 2024 INTERNATIONAL CONFERENCE ON MEDICAL IMAGING AND COMPUTER-AIDED DIAGNOSIS, MICAD 2024, 2025, 1372 :66-76
[8]   Endoscopic Ultrasound Can Differentiate High-Grade Pancreatic Intraepithelial Neoplasia, Small Pancreatic Ductal Adenocarcinoma, and Benign Stenosis [J].
Sagami, Ryota ;
Yamao, Kentaro ;
Minami, Ryuki ;
Nakahodo, Jun ;
Akiyama, Hidetoshi ;
Nishikiori, Hidefumi ;
Mizukami, Kazuhiro ;
Yamao, Kenji ;
Bhatia, Vikram ;
Amano, Yuji ;
Murakami, Kazunari .
GUT AND LIVER, 2024, 18 (02) :338-347
[9]   Pancreatic intraepithelial neoplasia and histological changes in non-neoplastic pancreas associated with neoadjuvant therapy in patients with pancreatic ductal adenocarcinoma [J].
Chatterjee, Deyali ;
Katz, Matthew H. ;
Rashid, Asif ;
Estrella, Jeannelyn S. ;
Wang, Hua ;
Varadhachary, Gauri R. ;
Wolff, Robert A. ;
Lee, Jeffrey E. ;
Pisters, Peter W. ;
Abbruzzese, James L. ;
Fleming, Jason B. ;
Wang, Huamin .
HISTOPATHOLOGY, 2013, 63 (06) :841-851
[10]   MicroRNAs in pancreatic ductal adenocarcinoma [J].
Park, Jong Y. ;
Helm, James ;
Coppola, Domenico ;
Kim, Donghwa ;
Malafa, Mokenge ;
Kim, Seung Joon .
WORLD JOURNAL OF GASTROENTEROLOGY, 2011, 17 (07) :817-827