Generalized power series solutions to linear partial differential equations

被引:0
作者
van der Hoeven, Joris [1 ]
机构
[1] Univ Paris Sud, Dept Math, F-91405 Orsay, France
关键词
linear partial differential equation; asymptotics; algorithm; differential algebra; formal power series; tangent cone algorithm;
D O I
10.1016/j.jsc.2007.04.001
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Let Theta = C vertical bar e(-x1),...,e(-xn)parallel to partial derivative(1),...,partial derivative(n)vertical bar and S = C[x(1),...,x(n)parallel to[e(Cx1+...+Cxn)]], where C is an effective field and x(1)(N)...x(n)(N)e(cx1+...+Cxn) and S are given a suitable asymptotic ordering <=. Consider the mapping L : S ---> S-l; f --> (L(l)f,...,L(l)f), where L-l,...,L-l is an element of Theta. For g = (g(1),...,g(l)) is an element of S-L(l) = im L, it is natural to ask how to solve the system Lf = g. In this paper, we will effectively characterize S-L(l) and show how to compute a so called distinguished right inverse L-1 : S-L(l) --> S of L. We will also characterize the solution space of the homogeneous equation Lh = 0. (C) 2007 Published by Elsevier Ltd.
引用
收藏
页码:771 / 791
页数:21
相关论文
共 25 条
[1]  
[Anonymous], THESIS U PARIS 7
[2]   Formal solutions of linear PDEs and convex polyhedra [J].
Aroca, F ;
Cano, J .
JOURNAL OF SYMBOLIC COMPUTATION, 2001, 32 (06) :717-737
[3]  
BOULIER F, 1994, THESIS U LILLIE
[4]  
BUCHBERGER B, 1985, MULTIDIMENSIONAL SYS, P184
[5]  
Buchberger B., 1965, THESIS U INSBRUCK
[6]  
DELLADORA J, 1982, LECT NOTES COMPUT SC, V144, P273
[7]  
FABRY E, 1885, THESIS PARIS
[8]  
GALLIGO A, 1985, LECT NOTES COMPUT SC, V204, P413
[9]   Tangent cone algorithm for homogenized differential operators [J].
Granger, M ;
Oaku, T ;
Takayama, N .
JOURNAL OF SYMBOLIC COMPUTATION, 2005, 39 (3-4) :417-431
[10]   RESOLUTION SINGULARITIES OF ALGEBRAIC VARIETY OVER FIELD OF CHARACTERISTIC ZERO .I. [J].
HIRONAKA, H .
ANNALS OF MATHEMATICS, 1964, 79 (01) :109-&