Arbuscular mycorrhizal fungi and antioxidant enzymes in ameliorating drought stress: a meta-analysis

被引:19
|
作者
Chandrasekaran, Murugesan [1 ]
Paramasivan, Manivannan [2 ]
机构
[1] Sejong Univ, Dept Food Sci & Biotechnol, 209 Neundong Ro, Seoul 05006, South Korea
[2] Salem Coll Engn & Technol, Dept Biomed Sci, Salem 636111, Tamil Nadu, India
基金
英国科研创新办公室;
关键词
Arbuscular mycorrhizal fungi; Antioxidant enzymes; Drought stress; AMF inoculation efficiency; Meta-analysis; WATER RELATIONS; PLANTS; GROWTH;
D O I
10.1007/s11104-022-05582-3
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Purpose Drought is becoming one of the most important environmental stresses and is causing the metabolic imbalance in plants as a result of reactive oxygen species (ROS) accumulation, and a substantial reduction in agriculture productivity. It has been reported for several decades that when plants are inoculated with arbuscular mycorrhizal fungi (AMF), the extent of ROS accumulation due to drought stress is reduced and AMF-inoculated plants have greater antioxidant defense mechanisms. Nevertheless, a comprehensive description of correlating drought stress and antioxidant enzymatic roles in mitigation remains unraveled. Methods In the present study, we used meta-analysis in evaluating the AMF inoculation and the prospective antioxidant enzyme responses in alleviating drought stress. Results Overall analysis showed that AMF inoculation significantly increased the drought stress alleviation by 17% more than the non-mycorrhizal controls. In addition, antioxidant enzymes analysis showed that SOD enzyme activity increased significantly by 32%, followed by CAT (23%), POD (28%), and APX (27%) across all studies compared to non-inoculated controls whereas the accumulation of H2O2 reduced significantly by 20%. Moreover, the beneficial effects of AMF differed depending on the identity of the host plant, AMF species, and level of drought stress. Conclusion Thus, our meta-analysis study suggests that AMF plays a pivotal role in the elimination of H2O2 through the upregulation of antioxidant enzymes but it depends upon the identity of AMF and plant species under drought stress conditions.
引用
收藏
页码:295 / 303
页数:9
相关论文
共 50 条
  • [31] Can arbuscular mycorrhizal fungi mitigate drought stress in annual pasture legumes?
    Jongen, Marjan
    Albadran, Baraa
    Beyschlag, Wolfram
    Unger, Stephan
    PLANT AND SOIL, 2022, 472 (1-2) : 295 - 310
  • [32] Arbuscular Mycorrhizal Fungi as Potential Agents in Ameliorating Heavy Metal Stress in Plants
    Dhalaria, Rajni
    Kumar, Dinesh
    Kumar, Harsh
    Nepovimova, Eugenie
    Kuca, Kamil
    Torequl Islam, Muhammad
    Verma, Rachna
    AGRONOMY-BASEL, 2020, 10 (06):
  • [33] Responses of Arbuscular Mycorrhizal Fungi Occurrence to Organic Fertilizer: A meta-analysis of field studies
    Shangtao Jiang
    Xiangrui An
    Yadong Shao
    Yalong Kang
    Tingsu Chen
    Xinlan Mei
    Caixia Dong
    Yangchun Xu
    Qirong Shen
    Plant and Soil, 2021, 469 : 89 - 105
  • [34] Multiple factors influence the role of arbuscular mycorrhizal fungi in soil aggregation—a meta-analysis
    Eva F. Leifheit
    Stavros D. Veresoglou
    Anika Lehmann
    E. Kathryn Morris
    Matthias C. Rillig
    Plant and Soil, 2014, 374 : 523 - 537
  • [35] Responses of Arbuscular Mycorrhizal Fungi Occurrence to Organic Fertilizer: A meta-analysis of field studies
    Jiang, Shangtao
    An, Xiangrui
    Shao, Yadong
    Kang, Yalong
    Chen, Tingsu
    Mei, Xinlan
    Dong, Caixia
    Xu, Yangchun
    Shen, Qirong
    PLANT AND SOIL, 2021, 469 (1-2) : 89 - 105
  • [36] Effect of arbuscular mycorrhizal fungi on growth, mineral nutrition, antioxidant enzymes activity and fruit yield of tomato grown under salinity stress
    Latef, Arafat Abdel Hamed Abdel
    He Chaoxing
    SCIENTIA HORTICULTURAE, 2011, 127 (03) : 228 - 233
  • [37] Arbuscular mycorrhizal fungi attenuate negative impact of drought on soil functions
    Tang, Bo
    Man, Jing
    Lehmann, Anika
    Rillig, Matthias C.
    GLOBAL CHANGE BIOLOGY, 2024, 30 (07)
  • [38] Functions of arbuscular mycorrhizal fungi in regulating endangered species Heptacodium miconioides growth and drought stress tolerance
    Li, Yueling
    Wang, Xiaoyan
    Chen, Xingyu
    Lu, Jieyang
    Jin, Zexin
    Li, Junmin
    PLANT CELL REPORTS, 2023, 42 (12) : 1967 - 1986
  • [39] Arbuscular Mycorrhizal Fungi Enhance Tolerance to Drought Stress by Altering the Physiological and Biochemical Characteristics of Sugar Beet
    Cui, Zeyuan
    Chen, Rui
    Li, Tai
    Zou, Bingchen
    Geng, Gui
    Xu, Yao
    Stevanato, Piergiorgio
    Yu, Lihua
    Nurminsky, Vadim N.
    Liu, Jiahui
    Wang, Yuguang
    SUGAR TECH, 2024, 26 (05) : 1377 - 1392
  • [40] A meta-analysis of arbuscular mycorrhizal effects on plants grown under salt stress
    Murugesan Chandrasekaran
    Sonia Boughattas
    Shuijin Hu
    Sang-Hyon Oh
    Tongmin Sa
    Mycorrhiza, 2014, 24 : 611 - 625