How edge-reinforced random walk arises naturally

被引:16
作者
Rolles, SWW [1 ]
机构
[1] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
关键词
Markov Chain; Random Walk; Reversible Markov Chain; Unique Mixture; Exchangeable Sequence;
D O I
10.1007/s00440-003-0260-8
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We give a characterization of a modified edge-reinforced random walk in terms of certain partially exchangeable sequences. In particular, we obtain a characterization of an edge-reinforced random walk ( introduced by Coppersmith and Diaconis) on a 2-edge-connected graph. Modifying the notion of partial exchangeability introduced by Diaconis and Freedman in [3], we characterize unique mixtures of reversible Markov chains under a recurrence assumption.
引用
收藏
页码:243 / 260
页数:18
相关论文
共 7 条
[1]   DE FINETTI THEOREM FOR MARKOV-CHAINS [J].
DIACONIS, P ;
FREEDMAN, D .
ANNALS OF PROBABILITY, 1980, 8 (01) :115-130
[2]  
Diaconis P., 1987, BAYESIAN STAT, V3, P111
[3]  
KEANE M. S., 2000, INFINITE DIMENSIONAL, V52, P217
[4]   Tubular recurrence [J].
Keane, MS ;
Rolles, SWW .
ACTA MATHEMATICA HUNGARICA, 2002, 97 (03) :207-221
[5]   POLYA TREES AND RANDOM DISTRIBUTIONS [J].
MAULDIN, RD ;
SUDDERTH, WD ;
WILLIAMS, SC .
ANNALS OF STATISTICS, 1992, 20 (03) :1203-1221
[6]  
Zabell S. L., 1982, The Annals of Statistics, V10, P1090, DOI [10.1214/aos/1176345975, DOI 10.1214/AOS/1176345975]
[7]   CHARACTERIZING MARKOV EXCHANGEABLE SEQUENCES [J].
ZABELL, SL .
JOURNAL OF THEORETICAL PROBABILITY, 1995, 8 (01) :175-178