INFINITELY MANY SOLUTIONS FOR CRITICAL FRACTIONAL EQUATION WITH SIGN-CHANGING WEIGHT FUNCTION

被引:1
作者
Chen, Wei [1 ]
Tang, Chun-Lei [1 ]
机构
[1] Southwest Univ, Sch Math & Stat, Chongqing 400715, Peoples R China
来源
JOURNAL OF APPLIED ANALYSIS AND COMPUTATION | 2020年 / 10卷 / 01期
关键词
Fractional Schrodinger equations; critical exponent; sign-changing weight function; symmetric Mountain Pass Theorem; CONCAVE-CONVEX NONLINEARITIES; SCHRODINGER-EQUATIONS; POSITIVE SOLUTIONS; MULTIPLICITY; EXISTENCE;
D O I
10.11948/20190017
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we consider the fractional Schrodinger type equations with critical exponent, concave nonlinearity and sign-changing weight function on R-N. With the aid of the symmetric Mountain Pass Theorem, we prove this problem has infinitely many small energy solutions.
引用
收藏
页码:131 / 139
页数:9
相关论文
共 23 条
  • [1] Ambrosetti A., 2007, NONLINEAR ANAL SEMIL, V104
  • [2] Applebaum D., 2004, NOT AM MATH SOC, V51, P1336
  • [3] Elliptic problems involving the fractional Laplacian in RN
    Autuori, Giuseppina
    Pucci, Patrizia
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 255 (08) : 2340 - 2362
  • [4] A critical fractional equation with concave convex power nonlinearities
    Barrios, B.
    Colorado, E.
    Servadei, R.
    Soria, F.
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2015, 32 (04): : 875 - 900
  • [5] Bhakta M, 2017, DIFFER INTEGRAL EQU, V30, P387
  • [6] Bisci GM, 2016, ENCYCLOP MATH APPL, V162
  • [7] A concave-convex elliptic problem involving the fractional Laplacian
    Braendle, C.
    Colorado, E.
    de Pablo, A.
    Sanchez, U.
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2013, 143 (01) : 39 - 71
  • [8] A RELATION BETWEEN POINTWISE CONVERGENCE OF FUNCTIONS AND CONVERGENCE OF FUNCTIONALS
    BREZIS, H
    LIEB, E
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 88 (03) : 486 - 490
  • [9] On positive solutions of nonlinear elliptic equations involving concave and critical nonlinearities
    Chabrowski, J
    Drábek, P
    [J]. STUDIA MATHEMATICA, 2002, 151 (01) : 67 - 85
  • [10] Ground state solutions of asymptotically linear fractional Schrodinger equations
    Chang, Xiaojun
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2013, 54 (06)