In silico species identification and serotyping for Cronobacter isolates by use of whole-genome sequencing data

被引:10
|
作者
Wang, Lu [1 ]
Zhu, Wenxuan [1 ]
Lu, Gege [1 ]
Wu, Pan [1 ]
Wei, Yi [1 ]
Su, Yingying [1 ]
Jia, Tianyuan [1 ]
Li, Linxing [1 ]
Guo, Xi [1 ]
Huang, Min [1 ]
Yang, Qian [1 ]
Huang, Di [1 ]
Liu, Bin [1 ,2 ,3 ]
机构
[1] Nankai Univ, TEDA, TEDA Inst Biol Sci & Biotechnol, Tianjin, Peoples R China
[2] Minist Educ, Key Lab Mol Microbiol & Technol, Tianjin, Peoples R China
[3] Minist Educ, Ctr Microbial Funct Genom & Detect Technol, Tianjin, Peoples R China
基金
中国国家自然科学基金;
关键词
CroTrait; Cronobacter; Species identification; Serotyping; ANTIGEN GENE CLUSTERS; ENTEROBACTER-SAKAZAKII; O-ANTIGENS;
D O I
10.1016/j.ijfoodmicro.2021.109405
中图分类号
TS2 [食品工业];
学科分类号
0832 ;
摘要
Cronobacter spp. are foodborne pathogens that can cause severe infections in neonates through contaminated powdered infant formula. Accurate and rapid pathogen identification and serotyping are crucial to limit the detrimental effects of bacterial infections, and to prevent outbreaks and sporadic infections. Conventional serotyping is tedious, laborious, and time-consuming; however, with whole-genome sequencing (WGS) becoming faster and cheaper, WGS has vast potential in routine typing and surveillance. Hence, in this study, we developed a publicly available tool, CroTrait (Cronobacter Traits), for in silico species identification and O serotyping of Cronobacter isolates based on WGS data. CroTrait showed excellent performance in species identification and O serotyping when 810 genomes with known species identities and 276 genomes with known O serotype were tested. Moreover, CroTrait allows rapid prediction of new potential O serotypes. We identified 11 novel potential O serotypes of Cronobacter using CroTrait. Therefore, CroTrait is a convenient and promising tool for species identification and O serotyping of Cronobacter isolates.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Rapid and Easy In Silico Serotyping of Escherichia coli Isolates by Use of Whole-Genome Sequencing Data
    Joensen, Katrine G.
    Tetzschner, Anna M. M.
    Iguchi, Atsushi
    Aarestrup, Frank M.
    Scheutz, Flemming
    JOURNAL OF CLINICAL MICROBIOLOGY, 2015, 53 (08) : 2410 - 2426
  • [2] In Silico Serotyping Based on Whole-Genome Sequencing Improves the Accuracy of Shigella Identification
    Wu, Yun
    Lau, Henry K.
    Lee, Teresa
    Lau, David K.
    Payne, Justin
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2019, 85 (07)
  • [3] Application of Whole-Genome Sequencing Data for O-Specific Antigen Analysis and In Silico Serotyping of Pseudomonas aeruginosa Isolates
    Thrane, Sandra Wingaard
    Taylor, Veronique L.
    Lund, Ole
    Lam, Joseph S.
    Jelsbak, Lars
    JOURNAL OF CLINICAL MICROBIOLOGY, 2016, 54 (07) : 1782 - 1788
  • [4] In Silico Genotyping of Escherichia coli Isolates for Extraintestinal Virulence Genes by Use of Whole-Genome Sequencing Data
    Tetzschner, Anna Maria Malberg
    Johnson, James R.
    Johnston, Brian D.
    Lund, Ole
    Scheutz, Flemming
    JOURNAL OF CLINICAL MICROBIOLOGY, 2020, 58 (10)
  • [5] Whole-Genome Sequencing Data for Serotyping Escherichia coli-It's Time for a Change!
    Jenkins, Claire
    JOURNAL OF CLINICAL MICROBIOLOGY, 2015, 53 (08) : 2402 - 2403
  • [6] Parametric modeling of whole-genome sequencing data for CNV identification
    Vardhanabhuti, Saran
    Jeng, X. Jessie
    Wu, Yinghua
    Li, Hongzhe
    BIOSTATISTICS, 2014, 15 (03) : 427 - 441
  • [7] Oxford nanopore technologies-a valuable tool to generate whole-genome sequencing data for in silico serotyping and the detection of genetic markers in Salmonella
    Thomas, Christine
    Methner, Ulrich
    Marz, Manja
    Linde, Joerg
    FRONTIERS IN VETERINARY SCIENCE, 2023, 10
  • [8] PennCNV in whole-genome sequencing data
    Lima, Leandro de Araujo
    Wang, Kai
    BMC BIOINFORMATICS, 2017, 18
  • [9] PennCNV in whole-genome sequencing data
    Leandro de Araújo Lima
    Kai Wang
    BMC Bioinformatics, 18
  • [10] Identification of individuals by trait prediction using whole-genome sequencing data
    Lippert, Christoph
    Sabatini, Riccardo
    Maher, M. Cyrus
    Kang, Eun Yong
    Lee, Seunghak
    Arikan, Okan
    Harley, Alena
    Bernal, Axel
    Garst, Peter
    Lavrenko, Victor
    Yocum, Ken
    Wong, Theodore
    Zhu, Mingfu
    Yang, Wen-Yun
    Chang, Chris
    Lu, Tim
    Lee, Charlie W. H.
    Hicks, Barry
    Ramakrishnan, Smriti
    Tang, Haibao
    Xie, Chao
    Piper, Jason
    Brewerton, Suzanne
    Turpaz, Yaron
    Telenti, Amalio
    Roby, Rhonda K.
    Och, Franz J.
    Venter, J. Craig
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2017, 114 (38) : 10166 - 10171